
Supplementary exercises for Logic for Philosophy

Semantics of propositional logic

Show that:

1. �PL ((P∨Q)→R)→ (P→R)

2. �PL ((P∧Q)→R)→ ((Q∧∼R)→∼P )

3. �PL (P↔(Q↔R))→ ((P↔Q)↔R)

4. 2PL ((P∧Q)→R)→ (Q→R)

5. 2PL ((P→Q)∧ (P→R))→ (Q∧R)

6. P∨Q, P→R,Q→R �PL R

7. P→Q,Q→R, R→∼P �PL ∼P

8. P→(Q∨R),Q∧R 2PL ∼P

9. P↔Q and (P∧Q)∨ (∼P∧∼Q) are semantically equivalent (in PL)

10. ∼(P∧Q) and ∼P∧∼Q are not semantically equivalent (in PL)
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Axiomatic proofs in propositional logic

Before toolkit:

1. Show that P→(P→Q) ` (P→Q) (you may use exercises 2.4)

After toolkit:

2. Show that φ→ψ,χ→ψ,∼φ→χ `ψ.

(Given the de�nition of “∨”, this is reasoning by cases: φ→ψ,χ→ψ,φ∨χ `
ψ.)

3. Show that if Γ ,φ `ψ and∆,φ `∼ψ then Γ ,∆ `∼φ (this is the principle
of reductio ad absurdum).

4. Show that ` ((φ→ψ)→φ)→φ (“Peirce’s Law”)
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Metalogic for PL

Some practice with inductive proofs:

1. Show that every wff has at least one sentence letter.

2. Show that every wff has twice as many parentheses as→s.

3. Show that in the interpretation in which every sentence letter is true,
every formula with no ∼s is true.

After the completeness theorem section:

4. (Long) The “strong completeness theorem” says the following: for any set
of wffs Γ and any wff φ, if Γ �φ then Γ `φ. Prove the strong completeness
theorem.

Hint: pattern your proof after the proof of the regular completeness
theorem from section 2.9.4. Just as in section 2.9.4, the lemmas and
theorems from sections 2.8 and 2.9 will be needed.

5. The “compactness theorem” for propositional logic says that if a set
semantically implies a formula, then some �nite subset of that set also
semantically implies the formula; i.e.,: For any set of wffs Γ and wff φ, if
Γ �φ then for some �nite Γ0 ⊆ Γ , Γ0 �φ. Prove the compactness theorem.

Hint: the following items will be useful: i) strong soundness (exercise 2.9
from the book), ii) one of the other exercises on this page, and iii) one of
the theorems or lemmas from section 2.9.
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Three-valued logic

1. In section 3.4.3 we introduced a new symbol,4. But actually (as Tarski
showed), in Łukasiewicz’s system,4 can be de�ned in terms of ∼ and→,
as follows:

“4φ” is short for “∼(φ→∼φ)”

(a) Show that given Łukasiewicz’s tables for ∼ and→, this de�nition
does indeed generate the right truth table for4, i.e.:

4
1 1
0 0
# 0

(b) Show that the de�nition does not generate this truth table given
Kleene’s tables for ∼ and→.

2. Call the “semantic deduction theorem” the statement that if φ �ψ then
� φ→ψ. (Here φ and ψ may be any wffs given our original de�nition
of a wff from chapter 3. Thus the primitive connectives in φ and ψ can
only be ∼,→,∧,∨, and↔, although the result of starting with 4 and
then replacing it with Tarski’s de�nition is of course allowed.) Does the
semantic deduction theorem hold for…

(a) …Łukasiewicz’s system? (Hint: consider Tarski’s de�ned4.)
(b) …Kleene’s system?
(c) …the logic of paradox?

Does the converse of the semantic deduction theorem (i.e., “if �φ→ψ
then φ �ψ”) hold for…

(d) …Łukasiewicz’s system?
(e) …Kleene’s?
(f) …the logic of paradox? (Hint: consider ex falso quodlibet.)

3. Write out an “of�cial” de�nition of the Kleene valuation function KV
(as we did for the Łukasiewicz valuation function ŁV on pp. 75–6).

4



Validity and invalidity in modal logic

For each of the following wffs, give a countermodel for every system in which
it is not valid, and give a semantic validity proof for every system in which it
is valid. When you use a single countermodel or validity proof for multiple
systems, indicate which systems it is good for.

1. 32(P→23P )

2. 2(3P→Q)↔2(P→2Q)

3. 2(P→3Q)→ (3P→3Q)
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Quanti�ed modal logic

Give a validity proof if the wff is SQML-valid, and a countermodel if it is
invalid.

1. 2∀x(F x→Gx)→∀x(F x→2Gx)

2. 2∀x(F x→2Gx)→ (F a→Ga)
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