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1. Introduction

2. Importance of syntax to logic

Logic is largely about logical implication—truth preservation in virtue of logical
form. So statements of logical rules make reference to logical form, e.g.:

A and B
A

Why isn’t this an instance of the rule?:

Daisy and Luke are siblings

Therefore, Daisy

Because A and B must be sentences. So: logical rules use syntactic concepts (e.g.,
“sentence”) and make syntactic assumptions (e.g., ‘and’ connects sentences).

Good logic depends on good assumptions about syntax. Famous example:
Aristotle assumed that sentences have subject-predicate form, with a single
subject and single predicate. So the best he could do with:

Someone respects everyone
Therefore, everyone is respected by someone (or other)

is:

Some F s are Gs
Therefore, every F is an H

where F : ‘is a thing’, G: ‘respects-everyone’, H : ‘is-respected-by-someone’.
Not a valid syllogism.

Frege, on the other hand, allowed multi-place predicates, and introduced
quanti�ers, variables, and sentential connectives, thus enabling:

∃x∀yRxy
∀y∃xRxy
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2.1 Syntax in formal languages

Syntax is about which strings of symbols “make sense”, or are “well-formed”.

In modern logic, we invent formal languages with rigorously stipulated syntax.

Typical de�nition of what counts as a grammatical, or “well-formed” formula:

1. “Rt1 . . . tn” is a formula, for any n-place predicate R and any n terms
(i.e., names or variables), t1, . . . , tn

2. If A is a formula, so is “∼A”

3. If A and B are formulas, so are “(A∧B)”, “(A∨B)”, “(A→ B)”, and
“(A↔ B)”.

4. If A is a formula then so are “∀vA” and “∃vA”, where v is any
variable

5. There are no formulas other than those that can be shown to be
formulas using rules 1–4

(In addition to “formula”, this uses the syntactic concepts of “predicate” and
“term”.)

3. First- versus second-order logic

3.1 Syntax

Second-order logic allows variables in predicate position:

∀xGx ∃x∃yB xy (well-formed in both)
∃F F a ∀R(Rab → Rba) (well-formed only in second-order logic)

This is implemented by distinguishing individual variables (x, y, z . . . ) from pred-
icate variables: F ,X , R, . . . (which can be 1-place, 2-place, etc.), and changing
the �rst clause in the de�nition of a formula:
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1′. For any n-place predicate or predicate variable R and any n terms
(i.e., names or individual variables), t1, . . . , tn, “Rt1 . . . tn” is a formula.

Gloss of some second-order sentences:

∃F F a: “a has some property”

∀R(Rab → Rba): “b bears every relation to a that a bears to b”

But distinguish the �rst (for example) from:

∃x(P x ∧H ax)

where P : ‘is a property’ and H : ‘has’ (i.e., instantiates). This is a �rst-order
symbolization of “a has some property”.

3.2 Formal logic and logical consequence

In mathematical logic you stipulate the meanings of concepts like “formula in
language L” and “true in all interpretations”.

But it’s a philosophical question whether these stipulatively de�ned concepts
are good models of intuitive notions like logical truth and logical implication.

3.3 Semantics

There are two main approaches to formally modeling notions like logical truth
and logical consequence, the semantic and the proof-theoretic approach.

Semantic approach
1. De�ne interpretations—mathematically precise “pictures” of logical

possibilities

2. De�ne the notion of a sentence’s being true in a given interpretation

3. Use these notions to de�ne metalogical concepts. E.g., a sentence is
valid iff it is true in all interpretations; a set of sentences Γ semantically
implies a sentence S iff S is true in every interpretation in which every
member of Γ is true.
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Intepretation
(same for both �rst- and second-order logic)

A nonempty set, D (the “domain”), plus an assignment of an appropriate
denotation based on D to every nonlogical expression in the language.
Names are assigned members of D ; one-place predicates are assigned
sets of members of D ; two-place predicates are assigned sets of ordered
pairs of D ; and so on.

De�nition of truth
(this part for both �rst- and second-order logic)

i) A sentence F a is true in an interpretation I if and only if the denota-
tion of the name a is a member of the denotation of the predicate F ;
a sentence Rab is true if and only if the ordered pair of the denota-
tion of the name a and the denotation of the name b is a member of
the denotation of the predicate R; etc.

ii) A sentence ∼A is true in I if and only if A is not true in I ; a sentence
A∧B is true in I if and only if A is true in I and B is true in I ; etc.

iii) A sentence ∀vA is true in I if and only if A is true of every member
of D; a sentence ∃vA is true in I if and only if A is true of some
member of D .

De�nition of truth, continued
(clause added for second-order logic)

iv) Where R is an n-place predicate variable, a sentence ∀R A is true
in I if and only if A is true of every set of n-tuples of members of
D; a sentence ∃RA is true in I if and only if A is true of some set
of n-tuples of members of D .
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3.4 Proof theory

Second main approach to modeling logical truth and logical implication:

Proof-theoretic approach (Hilbert-style)

• Choose axioms (certain chosen formulas)

• Choose rules (certain chosen relations over formulas)

• Formula S follows via rule R from other formulas S1, . . . , Sn iff the
formulas S1, . . . , Sn, S stand in R.

• A proof of A from Γ is a �nite series of formulas, the last of which is
A, in which each formula is either i) a member of Γ , ii) an axiom, or
iii) follows from earlier lines in the series by a rule

• Γ proves A iff there exists some proof of A from Γ

• A is a theorem iff there exists some proof of A from the empty set ∅

The idea is to choose axioms that are obviously logical truths, and rules that are
obviously logical implications. Here is one proof-system for �rst-order logic:

Axioms:

A→ (B→A)
(A→ (B→C ))→ ((A→ B)→ (A→C ))
(∼A→∼B)→ (B→A)

∀vA→Av 7→t (universal instantiation)

Rules:

A A→ B
B

(modus ponens)
A→ B

A→∀vB
(universal generalization)

(Av 7→t : the result of replacing free vs in A with t s.)
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These “axioms” are actually axiom schemas. An axiom if what you get by replac-
ing the As, Bs, etc. with any formulas. So there are in�nitely many axioms.

To get proof systems for second-order logic, we add new axioms and/or rules.

New axiom schemas

∀X A→AX 7→F (second-order universal instantiation)
∃X∀v1 . . .∀vn(X v1 . . . vn↔A) (Comprehension)

(X is any n-place predicate variable, F is any n-place predicate, and A is a
schematic variable for any formula, which cannot have X free.)

Comprehension basically says that to any formula A there is a corresponding
property or relation. For example, let A be this formula:

H x ∧∃y(C y ∧O xy)
“x is a hipster who owns at least one chicken”

Then this is an instance of Comprehension:

∃X∀x(X x↔H x ∧∃y(C y ∧O xy))
“some property is had by exactly the hipsters who own at least one chicken”

3.5 Metalogic

There are dramatic metalogical differences between �rst- and second-order
logic.

3.5.1 Completeness

Gödel proved in 1929 that:

Completeness If a �rst-order formula is valid then it is a theorem

It’s relatively straightforward to prove the converse:

Soundness If a �rst-order formula is a theorem then it is valid
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But for second-order logic, there is no sound axiomatic system that is also
complete. (Caveat: we require that in axiomatic systems, there is a mechanical
procedure for telling what counts as rules or axioms.)

3.5.2 Compactness

A set of formulas, Γ , is satis�able if and only if there is some interpretation in
which every member of Γ is true. The following holds for �rst-order logic:

Compactness If every �nite subset of Γ is satis�able, Γ is satis�able.

Let’s illustrate why this is important. The ancestral of a two-place predicate R
is a two-place predicate R∗, such that:

R∗ab iff: Rab , or
Rax and Rx b , for some x, or
Rax and Rxy and Ry b , for some x and y, or …

That is: a is an R-ancestor of b iff there is some “�nite R-chain” from a to b :

a
…

b R:

R∗:

There is no way to de�ne R∗ using �rst-order predicate logic:

Suppose for reductio that some sentence, R∗ab , of predicate logic says
that a is an R-ancestor of b . Let Γ be this in�nite set of sentences:

Γ = {R∗ab ,A1,A2,A3, . . .}

where the sentences A1,A2,A3, . . . are the following:

A1 : ∼Rab (“There is no one-link R-chain”)
A2 : ∼∃x(Rax ∧Rx b ) (“There is no two-link R-chain”)
A3 : ∼∃x∃y(Rax ∧Rxy ∧Ry b ) (“There is no three-link R-chain”)

etc.

Γ is unsatis�able: in any interpretation in which R∗ab is true, there is
some �nite R-chain from a to b , and so one of the Ai s is false.
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Every �nite subset of Γ is satis�able: any �nite subset of the Ai s merely
rules out �nite chains between a and b up to some particular length
(depending on the “highest” Ai in the �nite subset), and R∗ab can still be
true if there is a chain longer than that between a and b .

This contradicts Compactness. Therefore R∗ab can’t exist.

Thus compactness tells us that the language of �rst-order logic is expressively
weak in a certain way. (For similar reasons you can’t express in �rst-order logic
the idea that there are only �nitely many things.)

But in second-order logic, compactness does not hold, and you can de�ne the
ancestral of a predicate:

R∗ab ↔∀F
�
�

∀x(Rax→ F x)∧∀x∀y((F x ∧Rxy)→ F y)
�

→ F b
�

“a is an R-ancestor of b if and only if for every property, F : IF i) everything
that a bears R to is an F , and ii) whenever an F bears R to something,
that something is also an F , THEN b is an F ”

(i.e.,)

“a is an R-ancestor of b if and only if b has every property that i) is had
by every “R-child” of a, and ii) is “closed under” R”

Second-order logic is in a sense more expressively powerful than �rst-order
logic.

3.5.3 Clarifying differences in expressive power

But doesn’t this �rst-order sentence de�ne the ancestral of R?:

R∗ab ↔∀z
�
�

∀x(Rax→ x ∈ z)∧∀x∀y((x ∈ z ∧Rxy)→ y ∈ z)
�

→ b ∈ z
�

“b is a member of every set, z, that contains every R-child of x and is
closed under R”

Answer: what is true is that no �rst-order sentence correctly de�nes R∗ in every
interpretation. A little more exactly:
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There is no �rst-order sentence R∗ab , such that in any interpretation I ,
R∗ab is true in I if and only if, where r is the set of ordered pairs that
is denoted by R in I , there is a �nite chain of members of the domain
of I , pairwise connected by r , leading from the denotation of a to the
denotation of b .

The set-theoretic �rst-order sentence doesn’t de�ne R∗ correctly in interpreta-
tions in which, e.g., ‘∈’ means something that has nothing to do with sets.

Moral: it’s hard-wired into the semantics for second-order logic that the second-
order quanti�er ∀F ranges over subsets of the domain, and that second-order
predications F x express set membership.

3.6 Metamathematics

3.6.1 Skolem’s paradox

Call a model of a set of sentences an interpretation in which every sentence in
the set is true. In �rst-order logic, the following holds:

Löwenheim-Skolem theorem If a set of sentences, Γ , has a model, it has a
model whose domain is at most countably in�nite.

So (e.g.), any consistent �rst-order axioms for set theory can be made true
in an interpretation whose domain has no more elements than the natural
numbers—despite the fact that you can prove in set theory that there exist sets
that are larger than the set of natural numbers.

Moral: sets of �rst-order sentences in a sense can’t pin down their intended
interpretation.

The Löwenheim-Skolem theorem doesn’t hold for second-order logic.

3.6.2 Nonstandard models of arithmetic

A similar moral holds for arithmetic.
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First-order language of arithmetic: the �rst-order language with symbols
0, ′,+, and ·.

Second-order language of arithmetic: the second-order language with
those symbols.

Standard interpretation: the interpretation whose domain is the set of
natural numbers, and in which ‘0’ denotes the number 0, ‘′’ denotes
the successor (or add-one) function, ‘+’ denotes the addition function,
and ‘·’ denotes the multiplication function.

Is there a set of sentences in the �rst-order language of arithmetic whose only
model is the standard interpretation?

No: you could “permute” elements in the standard interpretation.

Better question: what about a set, all of whose models are isomorphic to the
standard interpretation?

Still No: even if you include in the set all sentences true in the standard inter-
pretation, there will still be weird “nonstandard models”, looking like this:

0,1,2, . . .
︸ ︷︷ ︸

standard numbers

. . . . . .a−1,a0,a1, . . .
︸ ︷︷ ︸

some nonstandard numbers

. . . . . . b−1, b0, b1, . . .
︸ ︷︷ ︸

more nonstandard numbers

. . .

This is another example of the expressive weakness of �rst-order logic—another
failure to force interpretations to “look right” (as with Skolem’s paradox).

But in second-order logic it’s different. There is a second-order sentence all of
whose models are isomorphic to the standard interpretation.

3.6.3 Schematic and nonschematic axiomatizations

Project: write down axioms for arithmetic. We’ll want at least these:
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∀x∀y(x ′ = y ′→ x = y)
∀x 0 6= x ′

∀x(x 6= 0→∃y x = y ′)
∀x x + 0= x
∀x∀y x + y ′ = (x + y)′

∀x x · 0= 0
∀x∀y x · y ′ = (x · y)+ x

But we still need something about induction, which says roughly:

“if 0 has a property, and if whenever a number has that property, so does
the next number, then every number has the property”

How we articulate this exactly depends on whether we’re using the �rst- or
second-order language of arithmetic.

∀F
�
�

F 0∧∀x(F x→ F x ′)
�

→∀xF x
�

(second order induction principle)
�

A(0)∧∀x(A(x)→A(x ′))
�

→∀xA(x) (�rst order induction schema)

The schema only says that induction works for the de�nable properties, so to
speak, whereas the second-order principle says it works for all properties. And
really, one might argue, it’s this latter thing that we want to say.
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