
Crash Course:
Type theory and λ-abstraction

Ted Sider
Higher-order

metaphysics

1. Third-order logic and beyond

With predicates of predicates we can symbolize sentences like:

Sally and John have exactly the same virtues

∀X (VX → (X s↔X j))

Syntax:

In addition to the ordinary kind of predicates (both constant and variable),
there are higher-order predicates: F ,G , For any higher-order predicate,
F , and any one-place ordinary predicate G, “F G” is a formula.

Semantics:

In any interpretation, the denotation of a higher-order predicate is a set
of sets of members of the domain.

The formula “F G” is true in an interpretation if and only if the denotation
of the ordinary predicate G is a member of the denotation of the higher-
order predicate F .

Also variables in predicates-of-predicates syntactic position:

There is some type of property such that Sally and John have exactly the
same properties of that type

∃Y∀X (YX → (X s↔X j))

We could keep going, introducing predicates of predicates-of-predicates, etc.

2. Type theory

In type theory we introduce a very general and iterative notion of syntactic
category, and have expressions (including variables) of all syntactic categories.

1

2.1 More about syntax

Syntactic rules specify what kinds of expressions combine with what other kinds
of expressions to form still other kinds of expressions; e.g.:

Rule for one-place predicates: If you take a one-place predicate, F , and attach it
to a term, t , the result F t is a formula

Rule for ∼: if you take the expression ∼, and attach it to a formula, A, the
result ∼A is a formula

Common pattern:

If you take an expression of category X , and attach it to an expression of
category Y , the result is an expression of category Z

To illustrate how the pattern might continue, consider this rule for a new
syntactic category we could introduce, that of predicate functors (adverbs):

If you take a predicate functor q, and attach it to a one-place predicate,
F , the result qF is a one-place predicate

2.2 Types

We need to talk about syntactic categories as entities—which we call types—so
that we can make generalizations about all syntactic categories:

There are two unde�ned types, e and t

(e is the type of singular terms; t is the type of sentences)

For any types, a1, . . . ,an and b , there is another type 〈a1, . . . ,an, b 〉

(〈a1, . . . ,an, b 〉 is the type of expressions that combine with ex-
pressions of types a1, . . . ,an to form an expression of type b)

Example 1: 〈e , t 〉. Expressions of this type combine with something of type e
to form an expression of type t . That is: they combine with terms to form
sentences. One-place predicates (of individuals)!

Example 2: 〈e , e , t 〉. Combine with two expressions of type e to form an expres-
sion of type t . Two-place predicates (of individuals).

2

Example 3: 〈t , t 〉. Combine with a formula to make a formula. One-place
sentence operators (like ∼ and 2).

Example 4: 〈t , t , t 〉. Combine with two formulas to make a formula. Two-place
sentence operators (∧,∨, . . .).

Example 5: 〈〈e , t 〉, t 〉. Combine with one-place predicates to make formulas.
Higher-order predicates.

Example 6: 〈〈e , t 〉, 〈e , t 〉〉. Combine with one-place predicates to form one-place
predicates. Adverbs/predicate functors.

2.3 Meaning: Frege and functions

Idea: think of the meaning of an expression in terms of what it does—in terms
of how it helps generate the meanings of complex expressions.

The denotation of a proper name is an individual.

The denotation of a sentence is its truth value (T or F)

The denotation of a predicate is a function from individuals to truth
values

The denotation of a sentential connective is a function from truth
values to truth values

Denotations of ‘runs’ and ‘bites’:

r (x) =
¨

T if x runs
F if x does not run

b (x, y) =
¨

T if x bites y
F if x does not bite y

Denotations of ‘and’ (∧) and ‘or’ (∨):

c(T ,T) = T d (T ,T) = T
c(T , F) = F d (T , F) = T
c(F ,T) = F d (F ,T) = T
c(F , F) = F d (F , F) = F

3

2.4 Formal semantics for type theory

First specify what sorts of entities in an interpretation are denoted by expres-
sions of each type:

Kinds of denotations, for a given domain D

e denotations are members of D

t denotations are truth values (i.e., T , F)

An 〈a1, . . . ,an, b 〉 denotation is an n-place function that maps an a1 de-
notation, an a2 denotation, …, and an an denotation, to a b denotation

Example: an 〈〈e , t 〉, 〈e , t 〉〉 denotation (the kind of denotation for a predicate
functor) is a function that maps 〈e , t 〉 denotations to 〈e , t 〉 denotations—a
function that maps any function from D to truth values to another function
that maps D to truth values.

De�nition of interpretation for type theory

An interpretation consists of a domain, D , and a speci�cation, for each
nonlogical expression of type a, of an a denotation for D

Denotations of complex expressions (in a given interpretation)

If E1, . . . , En are expressions of types a1, . . . ,an, with denotations d1, . . . , dn,
and expression E has type 〈a1, . . . ,an, b 〉 and denotes a function f , then
the denotation of the complex expression E(E1, . . . , En) (which has type
b) is: f (d1, . . . , dn)

4

Example:
∼q(R)(c) (“Ted doesn’t run quickly”)

Denotations:
type kind of denotation particular denotation

c e member of the domain Ted
R 〈e , t 〉 fx from entities to truth values the fx r that maps o to T iff o runs
q 〈〈e , t 〉, 〈e , t 〉〉 fx from 〈e , t 〉 fxs to 〈e , t 〉 fxs the fx q that maps g to the “g -ing quickly” fx
∼ 〈t , t 〉 fx from TVs to TVs the fx n that maps T to F and F to T

Let “|E |” abbreviate “the denotation of expression E”. Let’s calculate |∼q(R)(c)|:

|R|= r (see table)
|q|= q (see table)

|q(R)|= q(r) (rule for denotations of complexes)
|c |=Ted (see table)

|q(R)(c)|= q(r)(Ted) (rule for denotations of complexes)
|∼|= n (see table)

|∼q(R)(c)|= n(q(r)(Ted)) (rule for denotations of complexes)

Calculating n(q(r)(Ted)): q(r) maps a member of the domain to T iff it runs
quickly (since q maps a function from the domain to truth values to the cor-
responding “quickly function” from members of the domain to truth values.)
Since I run quickly, q(r)(Ted) = T . And so, n(q(r)(Ted)) = F .

Note: this is a formal semantics, and needn’t be a perfect model of intended
meaning.

2.5 Variables

In type theory, we allow variables of each type. E.g., quanti�cation into the
position of ∧ (‘and’):

∃ (Sc Ec)

into the positions of formulas, predicate functors, etc.

5

2.6 Typing symbols

Of�cially we write all variables as “x”, and all constants as “c”, and indicate
types by superscripts. So for any type, a, xa (and xa

1 , xa
2 , . . .) is a variable of type

a, and ca (and ca
1 , ca

2 , . . .) is a constant of type a. But unof�cially:

of�cial unof�cial
x e x, y, . . . individual variables
c e c , d , . . . names
x t P,Q . . . sentence variables
x 〈e ,t 〉, x 〈e ,e ,t 〉 X , F , R . . . predicate variables
x 〈t ,t ,t 〉, x 〈t ,t 〉 4, sentence-operator variables
c 〈〈e ,t 〉,t 〉 F ,G , . . . higher-order predicate constants
x 〈〈e ,t 〉,t 〉 X , Y , . . . higher-order predicate variables
c 〈〈e ,t 〉,〈e ,t 〉〉 q, r , . . . predicate-functor constants
x 〈〈e ,t 〉,〈e ,t 〉〉 x , y, . . . predicate-functor variables

3. λ-abstraction

3.1 Complex predicates

Natural languages have complex predicates, like ‘is sitting and eating’ (as in
‘Ted is sitting and eating’). We use the symbol λ to formalize them:

λx(S x ∧ E x)

glossed “is an x such that S x and E x”, or “is such that: it is sitting and it is
eating”, or “is sitting and eating”. Also multi-place complex predicates, e.g.,
“bites or is bitten by”:

λxy(B xy ∨By x)

So far, the syntax of λ is:

Where x1, . . . , xn are any variables and A is any formula, λx1 . . . xnA is
an n-place predicate

λ abstracts are used in sentences just like other predicates:

λx(S x∧E x)c

6

Formal semantics: λvA denotes the function mapping any o in the domain to
T iff A is true of o.

Example: let S mean “sitting” and E mean “eating”. Then λx(S x∧E x) denotes
the function mapping any o to T iff S x ∧ E x is true of o—i.e., iff o is
sitting and o is eating. So if c names Ted, then λx(S x∧E x)c is true iff
Ted is sitting and Ted is eating—iff Sc ∧ Ec is true.

Example: let B mean “bites”. Then λx∃yBy x denotes the function mapping
o to T iff ∃yBy x is true of o—iff something bites o. So λx∃yBy x(c) is
true iff something bites Ted—iff ∃yByc is true.

So: λx(S x ∧E x)c is equivalent to Sc ∧Ec ; λx∃yBy x(c) is equivalent to ∃yByc .

3.2 Generalizing λ: syntax

the whole “λ abstract”—type 〈e , t 〉

︷ ︸︸ ︷

λx (S x ∧ E x
︸ ︷︷ ︸

the “abstraction variable”—type e the “abstraction matrix”—type t

In type theory, we let the abstraction variables and matrix be of any types:

Syntax for λ generalized

For any variables, xa1
1 , . . . , xan

n , of types a1, . . . ,an (the “abstraction vari-
ables), and any expression, E , of type b (the “abstraction matrix”), the
expression

λxa1
1 . . . xan

n E

(the λ abstract) is of type 〈a1, . . . ,an, b 〉

7

3.3 Generalizing λ: semantics

We can gloss λ abstracts whose matrix expression is a formula using “such that”:

λxA: “is an x such that A”

λX A: “is a property, X , such that A”

λPA: “is a proposition (or truth value), P , such that A”

etc.

Also we can think about how they combine with other expressions. Recall, e.g.,
the equivalence between λx(S x ∧ E x)c and Sc ∧ Ec . In general, λ abstracts are
equivalent to their “β reductions”:1

β conversion

The result of applying the λ abstract λxa1
1 . . . xan

n E to expressions A1, . . . ,An
(of types a1, . . . ,an), namely:

λxa1
1 . . . xan

n E(A1, . . . ,An)

reduces by β conversion to:

Exa1
1 7→A1,...,xan

n 7→An

Example 0:
λX (X c ∨X d)

(“being a property that is had either by c or by d”). If you attach it to a one-place
predicate F , you get:

λX (X c ∨X d)F

which means the same thing as (via β conversion):

F c ∨ F d

Thus what λX (X c ∨ X d) does is this: it converts any predicate, F , into a
sentence meaning that c is F or d is F .

1No free variables in A1, . . .An may be “captured” by quanti�ers in Exa1
1 7→A1,...,xan

n 7→An
.

8

Example 1:
λP P

P is a variable of type t ; so the abstraction variable and matrix are type t , so
the entire λ abstract is type 〈t , t 〉. If you attach it to a formula, A, you get this
formula:

λP P (A)

which reduces by β conversion to:

A

So: λP P attaches to a sentence A to form a sentence that means A. It’s a
redundant sentence operator.

Example 2:
λx
�

q(R)(x)∧ g (R)(x)
�

where x is a variable of type e , q and g are predicate functor constants (type
〈〈e , t 〉, 〈e , t 〉〉), and R is a one-place predicate constant (type 〈e , t 〉). The entire
λ abstract is type 〈e , t 〉.

Think of q as meaning “quickly”, g as meaning “gracefully”, and R as meaning
“runs”. Then q(R) means “runs quickly”, and g (R) means “runs gracefully”;
and so, the entire λ abstract means “is an x such that x runs quickly and x runs
gracefully”—i.e., “runs quickly and gracefully”.

We can reach the same conclusion by thinking about what the λ abstract does.
If you attach it to a name, c , symbolizing “Ted”, say, you get:

λx
�

q(R)(x)∧ g (R)(x)
�

(c)

which reduces by β conversion to:

q(R)(c)∧ g (R)(c)

which means that Ted runs quickly and runs gracefully.

Example 3:
λY λx

�

q(Y)(x)∧ g (Y)(x)
�

The matrix variable Y is of type 〈e , t 〉, and the matrix expression is itself a λ
abstract:

λx
�

q(Y)(x)∧ g (Y)(x)
�

9

This “inner” λ abstract is of type 〈e , t 〉. Thus the “outer” λ abstract is type
〈〈e , t 〉, 〈e , t 〉〉. It’s a predicate functor.

If you attach the outer λ abstract to a one-place predicate, R, you get:

λY λx
�

q(Y)(x)∧ g (Y)(x)
�

(R)

which β-reduces to:
λx
�

q(R)(x)∧ g (R)(x)
�

—a predicate meaning “runs quickly and gracefully”. So the outer λ abstract
converts “runs” into “runs quickly and gracefully”. It’s a complex adverb:
“quickly and gracefully”!

We can also think of the meanings of λ abstracts by extending our formal
semantics to them:

Semantics for λ abstracts

In any interpretation, the λ abstract

λxa1
1 . . . xan

n E

denotes the n-place function that maps any n denotations, of types
a1, . . . ,an, respectively, to the object that E denotes when the variables
xa1

1 , . . . , xan
n are assigned those denotations

4. Alternate systems

4.1 Binary-only types and schön�nkelization

In some systems, complex types must always be “binary”: 〈a, b 〉. But more
complex types can still be simulated.

Example: instead of L (“loves”) being a two-place predicate (type 〈e , e , t 〉), it
has type 〈e , 〈e , t 〉〉. Combining L with a name c yields a predicate L(c)meaning
is loved by c . So L(c)(d) is a sentence meaning that d is such that it is loved by c .

Example: instead of ∧ being a two-place sentence operator (type 〈t , t , t 〉), it has
type 〈t , 〈t , t 〉〉: it attaches to a formula to make a one-place sentence operator.
So instead of writing A∧B we write ∧(A)(B).

10

4.2 Relational type theory

The theory we have been developing is called “functional type theory”. In
“relational type theory”, all types (other than names and formulas) are predicate
types (of arbitrarily high order and complexity):

De�nition of relational types

Unde�ned type: e

(The type of singular terms)

For any types a1, . . .an, (a1, . . . ,an) is also a type

(The type of expressions that combine with n expressions, of
types a1, . . . ,an, respectively, to make a formula. The case where
n = 0 is allowed: () is a type—the type of formulas)

Note: the functional type 〈a, b 〉 is the type of one-place expressions which
convert an a into a b , whereas the relational type (a, b) is the type of two-place
expressions which convert an a and a b into a formula.

For instance, the functional type 〈e , e〉 is the type of one-place function symbols
(like the successor sign ′ from the language of arithmetic), whereas the relational
type (e , e) is the type of two place (�rst-order) predicates, such as B for “bites”.

Any relational type has an “equivalent” functional type. (For example, to (e)
there corresponds 〈e , t 〉; to ((), e) there corresponds 〈t , e , t 〉.) But no relational
types correspond (in this sense) to, e.g., 〈e , e〉 or 〈〈e , t 〉, 〈e , t 〉〉. (Though one
can simulate expressions of these types using Russell’s theory of descriptions.)

4.3 Quanti�ers as higher-order predicates

Why not think of a quanti�ed natural language sentence like:

Something is sitting and eating

as meaning:
Sitting-and-eating has at least one instance

has-at-least-one-instance
�

λx(S x ∧ E x)
�

11

∃λx(S x ∧ E x)

Thus we could have λ do all the variable binding, and have quanti�ers attach
to λ abstracts. ∃ means “has at least one instance”; ∀ means “everything is an
instance”. New syntax for the quanti�ers:

If Π is a one-place predicate then ∀Π and ∃Π are formulas

Example: instead of writing ∃x∀yRxy for “there is someone who respects
everyone”, we instead write:

∃λx∀λyRxy

We can play this trick in type theory too. Instead of ∃X X c we write ∃λX X c ;
instead of ∀P (P∨∼P)we write ∀λP (P∨∼P). In general, for any type a, instead
of writing:

∃xaA ∀xaA

(where A is a formula) we now write instead:

∃aλxaA ∀aλxaA

∃a and ∀a are of type 〈〈a, t 〉, t 〉. They mean “applies to at least one a-entity” and
“applies to every a-entity”, respectively. In the formal semantics, they denote:

∃a denotes the function that maps any 〈a, t 〉 denotation, d , to T if and
only if for some a denotation, d ′, d (d ′) = T

∀a denotes the function that maps any 〈a, t 〉 denotation, d , to T if and
only if for every a denotation, d ′, d (d ′) = T

12

	Third-order logic and beyond
	Type theory
	More about syntax
	Types
	Meaning: Frege and functions
	Formal semantics for type theory
	Variables
	Typing symbols

	normalnormal-abstraction
	Complex predicates
	Generalizing normalnormal: syntax
	Generalizing normalnormal: semantics

	Alternate systems
	Binary-only types and schönfinkelization
	Relational type theory
	Quantifiers as higher-order predicates

