
Crash course on higher-order logic*

Theodore Sider December 2, 2022

Contents

1 Introduction 2

2 Importance of syntax to logic 3
2.1 Syntax in formal languages . 5

3 First- versus second-order logic 7
3.1 Syntax . 7
3.2 Formal logic and logical consequence 9
3.3 Semantics . 10
3.4 Proof theory . 12
3.5 Metalogic . 16

3.5.1 Completeness . 16
3.5.2 Compactness . 17
3.5.3 Clarifying differences in expressive power 19

3.6 Metamathematics . 20
3.6.1 Skolem’s paradox . 21
3.6.2 Nonstandard models of arithmetic 21
3.6.3 Schematic and nonschematic axiomatizations 23

4 Paradoxes 26
4.1 Abstract mathematics and set-theoretic foundations 26
4.2 Russell’s paradox . 28
4.3 Axiomatic set theory and ZF . 30
4.4 Other paradoxes, other solutions . 34

5 Higher-order logic and λ-abstraction 37

*Thanks to Daniel Berntson, Eliya Cohen, Cian Dorr, John Keller, Brock Sides, Eric
Winsberg, and Alessandro Torza for comments. This was written for a graduate seminar I
taught in the spring of 2020. Despite its �aws (such as lack of rigor and comprehensiveness), it
may have some value as a �rst port of call. Other introductions to this material have started to
appear, such as the �rst chapter of Dorr et al. (2021) and Bacon (2022).

1

5.1 Third-order logic and beyond . 37
5.2 Higher-order logic and types . 38

5.2.1 More about syntax . 39
5.2.2 Types . 40
5.2.3 Meaning: Frege and functions 44
5.2.4 Formal semantics for higher-order logic 46
5.2.5 Variables . 50
5.2.6 Typing symbols . 51

5.3 λ-abstraction . 52
5.3.1 Complex predicates . 52
5.3.2 Generalizing λ: syntax . 55
5.3.3 Generalizing λ: semantics . 56

5.4 Alternate systems . 60
5.4.1 Binary-only types and schön�nkelization 60
5.4.2 Relational types . 61
5.4.3 Quanti�ers as higher-order predicates 64

1. Introduction

“Higher order metaphysics” is a hot topic, and an excellent one. The work is at
a high level, and is intrinsically interesting. It is relatively new, so there is still
much to be done. And it connects to adjacent areas, such as logic, philosophy
of logic, philosophy of mathematics, and philosophy of language. Getting up
to speed on higher-order matters is a good way to broaden your horizons.

But much of the literature on higher-order metaphysics is very hard to under-
stand, if you’re coming in from the outside. It is often technical, and familiarity
with various issues in logic, philosophy of logic, and philosophy of mathematics
is often presupposed.

For any subject, if you lack the background, the experience of reading an ad-
vanced paper can be very scary. Nothing makes any sense! And this is especially
true if a lot of the paper is written in symbols that you don’t understand, or
barely understand. It is easy to just assume that the topic is not for you, and
move on to something else. But the situation is rarely as bad as it seems; usually,
all you need is a little background. Then the papers won’t be anywhere near
as scary, and you’ll understand most of what is going on; and you’ll be able to
pick up the rest as you continue.

2

The necessary background for higher-order metaphysics isn’t that dif�cult. But
it’s spread out in many different places, and (as far as I know) isn’t presented
anywhere in a concise and introductory way. This document will go through this
background slowly and informally, without (I hope!) presupposing knowledge
of anything more than introductory logic. This background will include some
basic logic, philosophy of logic, philosophy of mathematics, and philosophy of
language.

This is intended to be a very informal introduction. I will sacri�ce rigor and
comprehensiveness to make things accessible.1

2. Importance of syntax to logic

In the literature on higher-order metaphysics, syntax—that is, grammar—often
matters a great deal. This might seem strange. So I’d like to start by talking
about why syntax is important in logic.

Logic is largely about logical implication, about what follows from what.

“Logical implication” means something like: truth preservation in virtue of
logical form. For example, ‘Jones is a sister’ does not logically imply ‘Jones is a
sibling’, because even though the latter is true whenever the former is, this is
not because of their logical forms; it is because of the meanings of ‘sister’ and
‘sibling’.

Since logical implication is by virtue of form, our statements of logical rules,
such as conjunction elimination:

A and B
A

talk about logical form. The statement of the logical rule says: any sentence
that has the logical form above the line (namely, “A and B”) logically implies
the corresponding sentence below the line. Other rules concern sentences with
other logical forms, such as “A or B”, “If A then B”, and so on.

But we need a clear account of syntax in order to state such rules properly. Why
isn’t the following an instance of conjunction elimination?

1For instance, when sketching formal semantics for quanti�ed languages, I won’t deal with
variables properly; I’ll say things like “∀vA is true iff A is true of every member of the domain”.

3

Daisy and Luke are siblings

Therefore, Daisy

It’s because the variables A and B in the rule of conjunction elimination are
supposed to stand for sentences, and the word ‘and’ in the rule is assumed to
occur between sentences. Thus conjunction elimination and other logical rules
use certain syntactic concepts (such as that of a sentence) and presuppose a
certain syntax for the language to which they’re applied.2

The success of a proposed logic depends crucially on the quality of its assump-
tions about syntax. To take a famous example, consider how Frege’s logic
supplanted Aristotle’s.3 Aristotle’s syllogistic logic had been the dominant con-
ception of logic for centuries, but in the late nineteenth century, Frege (and
others) showed that Aristotle’s logic was too weak, and developed a much more
powerful logic that we now know as predicate logic. Aristotle’s logic was limited
in power precisely because of its too-crude syntactic assumptions, namely that
the sentences that can occur in syllogisms always have subject-predicate form
(‘a is a G’, ‘All F s are Gs’, ‘Some F s are Gs’, ‘No F s are Gs’, etc.), with a single
subject and single predicate. Frege’s main innovations were syntactic. Frege
allowed predicates to have multiple subjects, as in ‘Jones respects Smith’, in
which the predicate is ‘respects’ and the subjects are ‘Jones’ and ‘Smith’, and
replaced Aristotelian general subjects ‘All F s’, ‘Some F s’, and ‘No F s’, with
quanti�ers ∀x and ∃x (not his notation), which could be attached to sentences
containing sentential connectives such as ∧, ∨,→, and ∼. Without developing
this new syntax, one couldn’t even state familiar logical rules of inference such
as conjunction elimination, existential generalization, and so on. With the new
syntax, Frege was able to explain the correctness of arguments that could not
be explained by Aristotle, such as:

Someone respects everyone

Therefore, everyone is respected by someone (or other)

The best representation Aristotle could have given these sentences would have

2In typical formal languages, the symbol for ‘and’ (e.g., ‘∧’) can only occur between sentences.
‘And’ in English has a more �exible syntax. For example, in addition to connecting sentences,
it can connect names to form complex plural subjects. Stating systematic rules of inference for
a natural language like English is much harder than stating rules for formal languages with a
simpler, and stipulated, syntax.

3The history here is actually more complex than the following caricature suggests.

4

been:

Some F s are Gs

Therefore, every F is an H

where F stands for ‘is a thing’ (a predicate true of everything), G stands for
‘respects-everyone’, and H stands for ‘is-respected-by-someone’. This is ob-
viously not a valid syllogism. The problem is that Aristotle has no way of
“breaking up” the predicates G and H . His syntax allows him no way of recog-
nizing the further logical structure they contain. But Frege’s syntax does let
him recognize this structure; he can represent the sentences thus:

∃x∀yRxy

∀y∃xRxy

In Frege’s logic, the second sentence does indeed follow from the �rst.

2.1 Syntax in formal languages

Syntax has to do with what combinations of symbols “make sense”, or are
“well-formed”. In English, ‘Sally owns a dog’ is a grammatical sentence, and
‘owns a dog’ is a grammatical verb phrase. In contrast, ‘Sally dog a owns’ isn’t a
grammatical sentence, and ‘dog a owns’ isn’t a grammatical verb phrase. Those
strings of words don’t make sense; they aren’t English. Concepts like sentence
and verb phrase are syntactic concepts.

In a modern approach to logic, one doesn’t deal with natural languages, because
their syntax is too complex. Rather, one develops formal languages. The syntax
of a formal language is typically similar to that of natural languages in certain
ways, but simpler, free of ambiguity, and stipulated.

To give a syntax for a formal language, one gives a rigorous de�nition of what
counts as a grammatical, or “well-formed” formula—or just “formula” for short.
The syntactic concept of formula is the analog in the formal language of the
syntactic concept of being a grammatical sentence of English. Here is a typical
de�nition:

5

1. “Rt1 . . . tn” is a formula, for any n-place predicate R and any n terms
(i.e., names or variables), t1, . . . , tn

2. If A is a formula, so is “∼A”

3. If A and B are formulas, so are “(A∧B)”, “(A∨B)”, “(A→ B)”, and
“(A↔ B)”

4. If A is a formula then so are “∀vA” and “∃vA”, where v is any
variable

5. A string of symbols is a formula only if it can be shown to be a
formulas using rules 1–4

To illustrate: ∀x(F x→Gx) is a formula (assuming that x is a variable and F
and G are one-place predicates), since: by clause 1, F x and Gx are formulas;
and so by clause 3, (F x→Gx) is a formula; and so, by clause 4, ∀x(F x→Gx)
is a formula. But ∀F →)x is not a formula, since it can’t be shown to be a
formula by sequential application of rules 1–4.

Note, by the way, the use of the concepts of predicate and term in this de�nition.
Like the concept of a formula, these are syntactic concepts. (They are partly,
but only partly, analogous to the natural-language syntactic concepts of verb
phrase and noun phrase.)

In logic, then, expressions fall under syntactic categories (predicate, term,
formula). Moreover, we make reference to those categories when we state
logical principles. For example, the rule of conjunction elimination, for a
formula language like the one we just developed, is:

A∧B
A

A fuller statement makes the reliance on the syntax clear:

For any formulas A and B , the formula A∧B logically implies A.

6

3. First- versus second-order logic

3.1 Syntax

The kind of logic usually taught in introductory philosophy classes is what
is known as “�rst-order logic”. A different kind, “second-order” logic (and
indeed, third- and higher-order logic) will be important for us.

The difference between �rst- and second-order logic begins with a difference
in syntax. The de�nition of a formula we considered in the previous section
was the one for �rst-order logic. Given that de�nition, there are formulas like
these:

∀xGx ∃x∃yB xy

but there are no formulas like the following:

∃F F a ∀R(Rab → Rba)

in which ‘F ’ and ‘R’ are variables. That is, variables are allowed to occur in
subject position only (the syntactic positions in which you’re allowed to �ll in
names), not predicate position. But in second-order logic, variables are allowed
to occur in predicate position, and so the second pair of expressions do count
as formulas.

To state the syntax for second-order logic, �rst, we make a distinction amongst
variables. Variables now come in two (disjoint) types: individual variables
x, y, z . . . (these are the old style) and, for each natural number n ≥ 1, n-place
predicate variables: F ,X , R, Second, we change the �rst clause in the de�ni-
tion of a formula:

1′. For any n-place predicate or predicate variable R and any n terms
(i.e., names or individual variables), t1, . . . , tn, “Rt1 . . . tn” is a formula.

Other than that, everything stays the same.

What do formulas like ∃F F a and ∀R(Rab → Rba) mean? Well, there isn’t
really a �xed answer—different people use such formulas to mean different
things. But on one common usage, these formulas quantify over properties.

7

Thus the �rst means, to a �rst approximation, that a has some property; and
the second means that b bears every relation to a that a bears to b .

This is only an approximation; and saying something more accurate would be
getting ahead of ourselves. But right here at the start we can make an important
point. Consider:

a has some property

Let’s make a distinction between a �rst-order and a second-order symbolization
of this sentence. The second-order symbolization is the one we’ve just met:
∃F F a. The �rst-order symbolization, on the other hand, is:

∃x(P x ∧H ax)

where ‘P ’ is a one-place predicate symbolizing ‘is a property’ and ‘H ’ is a two-
place predicate symbolizing ‘has’ (i.e., instantiates). This second symbolization
really is a �rst-order sentence, not a second-order sentence, since its variable
(namely, x) only occurs in subject position.

Thus the difference between �rst-order and second-order logic isn’t that the
latter is needed to talk about properties. One can talk about any entities one
wants, including properties, using �rst-order logic, since there is no limit to the
kinds of entities that can be in the range of the �rst-order quanti�ers ‘∀x’ and
‘∃x’. If there are such things as properties, we can quantify over them; and if it
makes sense to speak of objects having these properties, then we can introduce
a predicate H for having in a �rst order language.

(Caveat: sometimes the term ‘second-order’ (or ‘higher-order’) is used loosely,
to refer to all talk about properties. But in this document I will be using the
term in the narrowly logical sense, to refer to sentences in which quanti�ed
variables occur in predicate position—and later, other non-subject positions.)

But this naturally raises the question of what the difference in meaning is,
between the second-order sentence ∃F F a and the �rst-order sentence ∃x(P x∧
H ax). We’ll be getting to that soon; but to preview: some people think that
there is no difference, whereas others regard second-order quanti�ers as being
sui generis, and thus regard such sentences as not being equivalent.

8

3.2 Formal logic and logical consequence

Modern mathematical logic is a branch of mathematics. You set up a bunch of
de�nitions—for instance, the notion of a formula in a given formal language,
the notion of an interpretation, the notion of a formula being true in an interpre-
tation, etc.—and then you give mathematical proofs of various facts given the
de�nitions—e.g., that the formula ∀x(H x ∨∼H x) is true in all interpretations.

Unless you think there is something wrong with mathematics itself, there can
be no disputing the results of mathematical logic. But these results are about
stipulatively de�ned notions. It’s a nonmathematical claim that if a formula
(such as ∀x(H x ∨ ∼H x)) is true in all interpretations in some stipulatively
de�ned sense, then meaningful natural language sentences represented by that
formula (such as ‘Everything is either a human or not a human’) are logical
truths, in a sense that is not stipulatively de�ned. Similarly, it is an indisputable
mathematical truth that in every interpretation in which a formula ∼∼H a is
true, the formula H is true; but it is a nonmathematical claim that, for example,
“It’s not the case that it’s not the case that Ted is human” logically implies (again,
in a nonstipulated sense) “Ted is human”. And indeed, some people deny
these claims about logical truth and logical implication, despite admitting the
mathematical results. For example, there is a school of thought about logic
called intuitionism that rejects both double negation elimination and the law
of the excluded middle.

One of the main points of logic is to study the notions of logical truth and logical
implication. These notions are not stipulatively de�ned. They are objects of
philosophical re�ection, just like knowledge or persistence or goodness or
beauty. In mathematical logic we devise various formal gizmos, but it is a
philosophical claim that these formal gizmos accurately represent or depict or
model logical truth and logical consequence.

(When I say that there are philosophical questions about logical truth and
implication, I don’t mean to prejudge the question of how deep or substantive
those questions are. As I mentioned earlier, it is common to say that ‘Jones is
a sister’ does not logically imply ‘Jones is a sibling’ since this implication does
not hold in virtue of “form”, but rather in virtue of the meanings of ‘sister’ and
‘sibling’. But a paradigm of logical implication, such as the implication of ‘Jones
is a sister’ by ‘Jones is a sister and Jones is a lawyer’, also holds by virtue of
meaning (in whatever sense the �rst implication does), namely, by virtue of the

9

meaning of ‘and’. Why do we count ‘and’, but not ‘sister’ or ‘sibling’, as being
part of the “forms” of sentences? Put another way, why is ‘and’, but not ‘sister’
or ‘sibling’, a logical constant?4 It’s an open question how deep the answers to
such questions are, and thus an open question how deep the questions of logical
truth and logical consequence are along certain dimensions.5)

To sum up: it’s important to distinguish the notions of truth and logical
consequence—whose meanings are not stipulated—from the stipulative notions
we construct in mathematical logic (such as truth-in-all-interpretations-of-a-
certain-sort), which may or may not yield an accurate model of the former
notions.

3.3 Semantics

There are two main kinds of formal/mathematical models of the notions of log-
ical truth and logical consequence: semantic models and proof-theoretic models.

Let’s start with semantic models. Here is the overall idea:

Semantic approach
1. De�ne interpretations—mathematically precise “pictures” of logical

possibilities

2. De�ne the notion of a sentence’s being true-in a given interpretation

3. Use these notions to de�ne metalogical concepts. E.g., a sentence
is valid iff it is true in all interpretations; a set of sentences Γ se-
mantically implies a sentence S iff S is true in every interpretation
in which every member of Γ is true.

4See MacFarlane (2005) for an overview of this issue.
5But note that a failure of depth about what is, e.g., logically true wouldn’t imply a failure of

depth about what is true. The disagreement between intuitionists and classical logicians isn’t
just about what is logically true, e.g., whether ‘the decimal expansion of π either does or does
not contain some sequence of 666 consecutive 6s’ is a logical truth. It also is about, e.g., whether
the decimal expansion of π either does or does not contain some sequence of 666 consecutive
6s; and the substantivity of this latter disagreement isn’t undermined by nonsubstantivity of
what counts as a logical constant.

10

For �rst- and second-order logic, the usual de�nition of interpretation is exactly
the same:

Intepretation
(for both �rst- and second-order logic)

A nonempty set, D (the “domain”), plus an assignment of an appro-
priate denotation based on D to every nonlogical expression in the
language. Names are assigned members of D; one-place predicates
are assigned sets of members of D ; two-place predicates are assigned
sets of ordered pairs of D ; and so on.

But the de�nition of truth in an interpretation differs a little between �rst- and
second-order logic. In the case of �rst-order logic, the de�nition looks roughly
like this:6

De�nition of truth
i) A sentence F a is true in an interpretation I if and only if the deno-

tation of the name a is a member of the denotation of the predicate
F ; a sentence Rab is true if and only if the ordered pair of the
denotation of the name a and the denotation of the name b is a
member of the denotation of the predicate R; etc.

ii) A sentence∼A is true in I if and only if A is not true in I ; a sentence
A∧B is true in I if and only if A is true in I and B is true in I ; etc.

iii) A sentence ∀vA is true in I if and only if A is true of every member
of D; a sentence ∃vA is true in I if and only if A is true of some
member of D .

In the case of second-order logic, we keep these three clauses in the de�nition
of truth in an interpretation, and add a clause for quanti�ed sentences with
second-order quanti�ers:

6These and other such de�nitions in this document are not formally rigorous, particularly
in the clauses for quanti�ed sentences.

11

iv) Where R is an n-place predicate variable, a sentence ∀R A is true
in I if and only if A is true of every set of n-tuples of members of
D; a sentence ∃RA is true in I if and only if A is true of some set
of n-tuples of members of D .

Here is the informal summary. In semantics, �rst- and second-order logic
use the same notion of an interpretation: namely, a domain together with
denotations for names and predicates. As for the de�nition of truth-in-an-
interpretation, the second-order de�nition is just like the �rst-order one, ex-
cept that we add a provision for second-order sentences: the second-order
quanti�ers ∀R and ∃R range over the n-tuples of the domain.

3.4 Proof theory

The second main kind of formal/mathematical model of the notions of logical
truth and logical implication is the proof-theoretic model. Here the idea is that
logical implication is provability: a set of formulas Γ logically implies a formula
A if and only if there exists a proof of A from Γ .

The idea of a proof can be made precise in a number of ways. Here is a
particularly simple one (called a Hilbert system of proof). First one chooses a
set of formulas called axioms, and a set of relations over formulas called rules.
We say that a formula S follows via rule R from other formulas S1, . . . , Sn iff the
formulas S1, . . . , Sn, S stand in R. (For example, the rule modus ponens is the
relation that holds between any three formulas of the form A, A→ B , and B .)
And then we de�ne proofs thus:

A proof of A from Γ is a �nite series of formulas, the last of which is A,
in which each formula is either i) a member of Γ , ii) an axiom, or iii)
follows from earlier lines in the series by a rule

And �nally we say that Γ proves A iff there exists some proof of A from Γ

One more bit of terminology: a theorem is a formula, A, such that there exists a
proof of A from the empty set ∅. What is a proof from ∅? Well, if you think

12

about the de�nition of a proof from Γ , a proof from ∅ is a proof in which no
premises (other than axioms) are allowed. Thus a theorem is a formula that
can be proven from the axioms alone—this is the proof-theoretic notion of a
logical truth.

The idea is to choose axioms that are obviously logical truths—statements such
as:

�

(A∨B)∧∼A
�

→ B

and to choose rules that are obviously logical implications, such as modus
ponens. Thus a proof of A from Γ is just a chain of good arguments, starting
from Γ and culminating in A.

There are other ways of making provability precise.7 For instance, many other
systems of proof allow one to make temporary assumptions, as when one
assumes the antecedent of a conditional in a conditional proof, or when one
assumes the opposite of what one is trying to prove in a reductio. But let’s stick
with the Hilbert approach.

The Hilbert approach to provability can be taken with both �rst- and second-
order logic. For example, in �rst-order logic, one axiom system looks like
this:8

7But all ways of de�ning what counts as a proof share the feature of being mechanically
checkable in a certain sense. For example, to check whether a �nite series of formulas counts as
a legal proof in a given Hilbert system, start with the �rst formula of the series. Is it a member
of Γ or an axiom? If not, we don’t have a legal proof. Otherwise move on to the second formula.
Is it a member of Γ or an axiom? If not, does it follow from earlier formulas in the series by
some rule? If not, then we don’t have a legal proof. Otherwise, on to formula three. Eventually
we’ll reach the �nal formula, and will have checked whether the series counts as a proof. Note
that in any Hilbert system, it is always required that it be mechanically decidable what counts
as an axiom or rule of that system.

8See Shapiro (1991, section 3.2) for this system and the one for second-order logic. That
book is a generally useful although not easy source of information on second-order logic. In
universal instantiation, t must be a term that is “free for v in A”; in universal generalization, v
must be a variable that doesn’t occur freely in A or any member of Γ .

13

Axioms:

A→ (B→A)
�

A→ (B→C)
�

→
�

(A→ B)→ (A→C)
�

(∼A→∼B)→ (B→A)
∀vA→Av 7→t (universal instantiation)

Rules:

A A→ B
B

(modus ponens)
A→ B

A→∀vB
(universal generalization)

In the axioms, “Av 7→t ” means: the result of starting with A, and then replacing
every free occurrence of v with an occurrence of t . For example, if A is F v,
then Av 7→t would be F t .

The displayed “axioms” are in fact not axioms. Rather, they are axiom schemas.
Take the �rst schema, A→ (B → A). The letters “A” and “B” are schematic
variables, which stand for any formulas. When you replace them with formulas,
the result is called an instance of the schema. Here are some instances of the
schema A→ (B→A):

P → (Q→ P)
R→ (S→ R)

∼(P →Q)→
�

(Q→ R)→∼(P →Q)
�

etc.

The idea, then, is that every instance of A→ (B→A) counts as an axiom; and
similarly for the other three axiom schemas. Thus there are in�nitely many
axioms, not just four; but each axiom falls under one of four patterns.

To get various proof systems for second-order logic, we can just add new axioms
and/or rules to those of the above system for �rst-order logic. For instance:

14

New axiom schemas

∀X A→AX 7→F (second-order universal instantiation)
∃X∀v1 . . .∀vn(X v1 . . . vn↔A) (Comprehension)

(X is any n-place predicate variable, F is any n-place predicate, and A is a
schematic variable for any formula, which cannot have X free.)

Second-order universal instantiation is just like the old version of universal
instantiation, except that the variable is second-order. Here is an example of an
instance:

∀R(Rab → Rba)→ (Tab → T ba)

where R is a two-place predicate variable and T is a two-place predicate con-
stant. (We might similarly add a second-order version of the rule of universal
generalization.)

To get a feel for the Comprehension axiom, let A be the following formula:

H x ∧∃y(C y ∧O xy)

which might symbolize, e.g.,

x is a hipster who owns at least one chicken

We can then write down the following instance of Comprehension:

∃X∀x
�

X x↔H x ∧∃y(C y ∧O xy)
�

where X is a one-place predicate variable. In other words: there exists a property
which is had by an object if and only if that object is a hipster who owns at least
one chicken.

Thus what Comprehension says, roughly, is that to any formula A there is a
corresponding property or relation. (Thus this is a lot like the principle of
naïve comprehension from set theory. As we will see later, it doesn’t lead to the
same trouble.)

15

3.5 Metalogic

Here’s what we have done so far. For each of �rst- and second-order logic, we’ve
laid out i) a syntax for the language, ii) a semantics, and iii) a proof theory. We are
now in a position to understand some of the dramatic differences between �rst-
and second-order logic. The differences have to do with the behavior of the
metalogical notions introduced above: e.g., provability, semantic consequence,
and so on.

(The notions are called “metalogical” to distinguish them from logical notions
such as “and”, “not”, and “all”. Metalogical notions are notions that we employ
when we are talking about formal logical languages and investigating their
properties.)

3.5.1 Completeness

Let’s start with the relationship between theoremhood and validity. As we
saw earlier, these are two different ways of formalizing the intuitive notion of
logical truth. However, as Kurt Gödel proved in his dissertation in 1929, the
two formalizations are equivalent in the case of �rst-order logic. Gödel proved:

Completeness If a �rst-order formula is valid then it is a theorem

It’s relatively straightforward to prove the converse:

Soundness If a �rst-order formula is a theorem then it is valid

Thus the two results together tell us that a �rst order theorem is a theorem if
and only if it is valid—i.e., that for �rst-order logic, theoremhood is equivalent
to validity.

However, for second-order logic, the situation is very different. The axiom
system mentioned above is indeed sound: every theorem is valid. However,
that system isn’t complete: some valid formulas aren’t theorems. Moreover,
this isn’t just a failing of the particular system mentioned above. It follows from
Gödel’s �rst incompleteness theorem (which he proved two years later, in 1931)
that there can be no sound and complete axiom system for second-order logic.

There are some details here that matter. First, there is a trivial sense in which
we can come up with a complete axiom system for second-order logic, if we

16

allow systems with “rules” like the following:

A1,A2, . . .
B

(where B is any formula that is semantically implied by A1,A2, . . .)

or if we are allowed to de�ne the “axioms” as being all the valid formulas. In a
proper axiomatic system, it is required that there be a mechanical procedure—in
a certain precise sense—for deciding what counts as a rule or axiom.

Second, the claim that there can be no sound and complete axiom system for
second-order logic is tied to the de�nition of an interpretation for second-
order logic that was given in section 3.3. The interpretations de�ned there are
often called “standard” or “full” interpretations, since in them the second-order
quanti�ers range over all sets of n-tuples drawn from the domain. But one can
de�ne other notions of interpretation, in which the second-order quanti�ers
range over only some such sets; and there is no guarantee that metalogical
facts that hold under one notion of interpretation will continue to hold under
other notions of interpretation. For example, if “Henkin interpretations” are
substituted for full interpretations, then one can have a sound and complete
axiom system after all. Similar remarks apply to other metalogical differences
between �rst- and second-order logic to be discussed below.

This is philosophically important. It means that, in order to draw substantive
philosophical conclusions from metalogical facts like the incompleteness of
second-order logic (a procedure which is philosophically fraught anyway, as we
will see) one must be sure that the de�nition of interpretation involved in the
metalogical facts matches (as much as possible!) the intended interpretation of
the second-order quanti�ers.

3.5.2 Compactness

Call a set of formulas, Γ , satis�able if and only if there is some interpretation in
which every member of Γ is true. (This is a semantic notion of consistency.)
The following holds for �rst-order logic (it is a fairly immediate consequence
of the completeness theorem):

Compactness If every �nite subset of Γ is satis�able, Γ is satis�able.

To get a sense of why this is important, consider the following. Let R be any
two-place predicate. (Not a predicate variable; a predicate constant.) Informally

17

put, the ancestral of R, R∗, is a predicate obeying the following rule:

R∗ab iff: Rab , or
Rax and Rx b , for some x, or
Rax and Rxy and Ry b , for some x and y, or . . .

That is: a is an R-ancestor of b iff there is some “�nite R-chain” from a to b :

a
. . .

b R:

R∗:

(‘Ancestral’ because ancestor-of is the ancestral of parent-of.)

In fact there is no way to de�ne R∗ using �rst-order predicate logic. For suppose
otherwise—suppose there is some sentence, R∗ab , of predicate logic that says
that a is an R-ancestor of b . Now consider the following in�nite set, Γ , of
sentences:

Γ = {R∗ab ,A1,A2,A3, . . .}

where the sentences A1,A2,A3, . . . are the following:

A1 : ∼Rab (“There is no one-link R-chain”)
A2 : ∼∃x(Rax ∧Rx b) (“There is no two-link R-chain”)
A3 : ∼∃x∃y(Rax ∧Rxy ∧Ry b) (“There is no three-link R-chain”)

etc.

Notice two things about Γ : 1. Γ is unsatis�able—that is, there is no interpreta-
tion in which every member of Γ is true. For if R∗ab is true in an interpretation
then there is some �nite R-chain from a to b , in which case one of the Ai s must
be false in that interpretation. 2. Every �nite subset of Γ is satis�able. For any
�nite subset of the Ai s merely rules out �nite chains between a and b up to
some particular length (the length being whatever the highest of the Ai s is in
the �nite subset), and R∗ab can still be true if there is a chain longer than that
between a and b .

But 1 and 2 together contradict Compactness. Therefore there can exist no such
sentence R∗ab . You can’t de�ne the ancestral of a predicate using �rst-order
logic.

18

Thus compactness tells us something very important about �rst-order logic:
that language is expressively weak in a certain way. (There are other ways in
which �rst-order logic is expressively weak. One other related example is that
you can’t express in �rst-order logic the idea that there are only �nitely many
things.)

Second-order logic is very different in this respect. Compactness does not hold
for second-order logic. And in second-order logic you can de�ne the ancestral
of a predicate:

R∗ab ↔∀F
�
�

∀x(Rax→ F x)∧∀x∀y((F x ∧Rxy)→ F y)
�

→ F b
�

What this says, intuitively, is this:

a is an R-ancestor of b if and only if for every property, F : IF i) everything
that a bears R to is an F , and ii) whenever an F bears R to something,
that something is also an F , THEN b is an F

or, to put it differently:

a is an R-ancestor of b if and only if b has every property that i) is had
by every “R-child” of a, and ii) is “closed under” R

Thus there is a sense in which second-order logic is more expressively powerful
than �rst-order logic: you can say more with the language of second-order
logic.

3.5.3 Clarifying differences in expressive power

But it’s important to be clear about the exact sense in which second-order
logic is more expressively powerful. After all, consider the following �rst-order
sentence, in which ‘∈’ is a two-place predicate for set-membership:

R∗ab ↔∀z
�
�

∀x(Rax→ x ∈ z)∧∀x∀y
�

(x ∈ z ∧Rxy)→ y ∈ z
�

�

→ b ∈ z
�

What this says is that b is a member of every set, z , that contains every R-child
of x and is closed under R. This clearly seems like an acceptable de�nition of
R∗; but it’s �rst-order. So what is going on?

19

Here is the answer. When I said above that no sentence R∗ab “says” that a is
an R-ancestor of b , what I meant was that there is no sentence that says this in
every interpretation. A little more exactly:

There is no �rst-order sentence R∗ab , such that in any interpretation I ,
R∗ab is true in I if and only if, where r is the set of ordered pairs that
is denoted by R in I , there is a �nite chain of members of the domain
of I , pairwise connected by r , leading from the denotation of a to the
denotation of b .

The set-theoretic sentence above does succeed in saying that a is an R-ancestor
of b in set-theoretic interpretations—that is (roughly) in interpretations in which
the domain contains a suitable number of sets, and in which ‘∈’ denotes set-
membership. But there are plenty of non-set-theoretic interpretations in which
the set-theoretic sentence doesn’t express the ancestral, for instance interpreta-
tions in which ‘∈’ means something that has nothing to do with sets.

Thus there is a sense in which the usual semantics for second-order logic
“stacks the deck” in its favor. It is hard-wired into that semantics that the
second-order quanti�er ∀F ranges over subsets of the domain, and that second-
order predications F x express set membership. We simply don’t consider
second-order interpretations in which F x means anything different from “the
denotation of x is a member of the set denoted by F ”, whereas we do consider
second-order interpretations in which ‘x ∈ y’ does not mean ‘the denotation of
x is a member of the denotation of y’—the reason, in the latter case, is that ∈
is not treated as a logical constant. It’s not hard-wired into the semantics for
�rst-order logic that the nonlogical constant ∈ expresses set-membership, or
that the domain contains the sets it would need for the set-theoretic de�nition
to work. We will return to this sort of issue later.

3.6 Metamathematics

There are further important differences between �rst- and second-order logic,
which emerge when we consider the differences between �rst- and second-order
formulations of mathematical theories.

20

3.6.1 Skolem’s paradox

Call a model of a set of sentences, an interpretation in which every sentence in
the set is true. In �rst-order logic, the following holds:9

Löwenheim-Skolem theorem If a set of sentences, Γ , has a model, it has a
model whose domain is at most countably in�nite.

Thus, for example, no matter what �rst-order axioms we write down for set
theory, say, or for the theory of real numbers, provided those axioms are satis�-
able at all, there is some interpretation whose domain has no more elements
than the natural numbers, but in which all the axioms are true.

But how can that be? After all, you can prove in set theory, for example, that
there exist sets that are larger than the set of natural numbers.

This is called “Skolem’s paradox”. Really it isn’t a paradox at all. You can prove
in set theory a sentence in the language of set theory—containing the predicate
‘∈’—that says, given its intended interpretation, that there are sets larger than
the set of natural numbers. The interpretations that the Löwenheim-Skolem
theorem tells us about, in which the domain is the size of the natural numbers,
aren’t the intended interpretation. ‘∈’ doesn’t mean set-membership in such
interpretations, and the domain won’t contain all the sets.10

Skolem’s paradox does bring out something important, however, about �rst-
order logic: that sets of �rst-order sentences can’t pin down the intended
interpretation of their vocabulary solely by virtue of logic. Take any set of
sentences about the real numbers. If it has an intended model, in which the
domain is the set of real numbers, it must also have another nonisomorphic
model in which the domain has the size of the natural numbers.

Second-order logic is different in this respect. The Löwenheim-Skolem theo-
rem doesn’t hold for second-order logic. (But note again that it is just hard-
wired into the standard de�nition of a second-order interpretation that, e.g.,
“monadic predication means set-membership”.)

3.6.2 Nonstandard models of arithmetic

First some terminology.

9This is just one of a number of “Löwenheim-Skolem” theorems.
10Indeed, in no interpretation can the domain contain all the sets.

21

First-order language of arithmetic: the �rst-order language with symbols
0, ′,+, and ·.

Second-order language of arithmetic: the second-order language with
those symbols.

Standard interpretation: the interpretation whose domain is the set of
natural numbers, and in which ‘0’ denotes the number 0, ‘′’ denotes
the successor (or add-one) function, ‘+’ denotes the addition function,
and ‘·’ denotes the multiplication function.

So: you can write things like these this in the �rst-order language of arith-
metic: ‘0= 0’, ‘0′+ 0′ = 0′′’, ‘∃x x · 0′′ = 0′′′′’, and so on. And in the standard
interpretation, they mean, respectively, that the number 0 is self-identical, that
1+ 1= 2, and that there is some number that when multiplied by 2 yields the
number 4; and they are all true in that interpretation.

The second-order language of arithmetic is the same, but allows predicate
variables in addition to individual variables. Thus ‘∃F F 0’ (“the number zero has
at least one property”) is a formula in the second-order language of arithmetic,
though not the �rst-order.

OK. Here is a question. Is there any set of sentences in the �rst-order language
of arithmetic whose only model is the standard interpretation?

The answer to this is trivially no. Suppose the standard interpretation is a model
of some set of arithmetic sentences, Γ . We can construct a new interpretation
in which all the members of Γ are also true, by “swapping” the numbers 2 and 0:
let ‘0’ denote the number 2 in the new interpretation, let ‘′’ denote the function
that maps 2 to 1, 1 to 0, 0 to 3, and so on; and similarly for ‘+’ and ‘·’. For that
matter, we could construct an interpretation just like the standard interpretation
but in which Julius Caesar is swapped in for 0, both in the domain and in the
interpretations of 0, ′, +, and ·; and the members of Γ will all be true in this
interpretation as well.

In general, exactly the same sentences are true in “isomorphic” models: models
that have the same pattern, but in which the identities of the objects have been
altered.

22

OK, so the standard interpretation can’t be a unique model of any set of sen-
tences. But let’s ask a further question: is there any set of sentences whose
models are all isomorphic to the standard interpretation?

More surprisingly, the answer to this question is also no.11 Let Γ be any set of
sentences that are all true in the standard interpretation. In fact, let Γ be the
set of all such sentences. In addition to having the standard interpretation as
a model, Γ has what are called “nonstandard models”, which are models that
are structured as follows. They consist in part of a copy of the standard model:
there is the model’s “zero”—that is, the member of the domain that is denoted
by ‘0’. Then there is the model’s “one”—that is, the member of the domain
that is the successor of the model’s zero (that is: the member of the domain
that results by applying the model’s denotation of ‘′’ to the model’s denotation
of ‘0’). And so on. But in addition to these “standard numbers”, the model also
contains in�nitely many (and densely ordered) other series of numbers, each of
which is structured like the negative and positive integers: discrete, but without
beginning or end.

0,1,2, . . .
︸ ︷︷ ︸

standard numbers

.a−1,a0,a1, . . .
︸ ︷︷ ︸

some nonstandard numbers

. b−1, b0, b1, . . .
︸ ︷︷ ︸

more nonstandard numbers

. . .

Thus we again have an example of the expressive weakness of the language
of �rst-order logic. Using �rst-order sentences in the language of arithmetic,
there is no way to “force” models to look like the standard interpretation.

The situation is very different with second-order logic. There is a second-order
sentence in the language of arithmetic, all of whose models are isomorphic
to the standard interpretation. (That’s not to say that this sentence gives us
an axiomatic basis for arithmetic: since the completeness theorem fails for
second-order logic, there is no axiomatic method we can use to draw out the
consequences of this sentence.)

3.6.3 Schematic and nonschematic axiomatizations

There is a further difference between �rst- and second-order logic in the
formulation of mathematical theories that will be very important going forward.

11There is actually a further reason for the answer being no: because of the “upward”
Löwenheim-Skolem theorem, if the standard interpretation is a model of Γ , Γ must also have
models in which the domain has cardinality greater than that of the natural numbers. The
nonstandard models discussed in the text have domains of the same size as the natural numbers.

23

Let’s start with arithmetic. Consider the project of giving axioms for arithmetic:
axioms whose consequences (perhaps proof-theoretic consequences, perhaps
semantic consequences—we’ll confront this question later) are some, perhaps
all, of the truths of arithmetic. How will we do this?

Here are some of the axioms we will want:

∀x∀y(x ′ = y ′→ x = y)
∀x 0 6= x ′

∀x(x 6= 0→∃y x = y ′)
∀x x + 0= x
∀x∀y x + y ′ = (x + y)′

∀x x · 0= 0
∀x∀y x · y ′ = (x · y)+ x

Never mind the details (though these should look like intuitively correct and
very basic statements about arithmetic). What’s important is that these axioms
are not enough. A further key principle about arithmetic is the principle of
induction. This says, roughly, that if i) the number 0 has a certain property, and
ii) whenever a number has that property, so does that number’s successor, then:
every number has the property.

But how to state the principle of induction? You do it differently depending on
whether your language is �rst- or second-order:

∀F
�

�

F 0∧∀x(F x→ F x ′)
�

→∀xF x
�

(second order induction principle)
�

A(0)∧∀x
�

A(x)→A(x ′)
�

�

→∀xA(x) (�rst order induction schema)

Thus in second-order logic, you just add one further axiom: the second-order
induction principle is a single formula, that actually �ts the gloss above—it

24

begins with a quanti�er ∀F —“for every property. . .”. But in �rst-order logic,
you can’t say “for every property”. Rather, what you do is state an induction
axiom schema and say that every instance of this schema is an axiom. In this
schema, A is some formula with some variable v free; A(0) is the result of
changing free vs in A to 0s, A(x) is the result of changing free vs in A to xs,
etc.12

So in �rst-order logic, if we want to state principles of induction, we can’t do
it with one sentence; we need in�nitely many. However, even those in�nitely
many sentences don’t really capture the full principle of induction. What they
in effect say, taken together, is that induction holds for every statable property—
that is, every property of natural numbers corresponding to some formula A in
the �rst-order language of arithmetic. But there are many more properties of
natural numbers than that (there are only as many formulas as there are natural
numbers, but there are as many properties of natural numbers as there are real
numbers). So there is a sense in which we can’t really state the principle of
induction in a �rst-order language.

(This fact is closely connected to the existence of nonstandard models. It is
because we can include nothing stronger than the instances of the induction
schema that we get nonstandard models of �rst-order arithmetic. Including
the second-order induction principle rules them out.)

As with many of these differences between �rst- and second-order logic, there
are philosophical questions about the signi�cance of this distinction involving
schemas. It isn’t as if one avoids the need for schemas by adopting second-order
logic. Even though second-order axiomatizations of arithmetic and set theory
don’t require schemas, one still needs schemas in the axioms of second-order
logic itself, such as the comprehension schema. These latter logical axioms are
essential to the use of the second-order theories of arithmetic and set theory.
For instance, one conclusion we should be able to draw from any induction
principle is that “if 0 is either even or odd, and if whenever n is even or odd, n+1
is also either even or odd, then every number is either even or odd”. Now, the
second-order principle of induction says that for any property, if 0 has it and if
n+1 has it whenever n has it, then every number has that property. But in order

12In the terminology I was using earlier, the schema can be written this way:
�

Av 7→0 ∧∀x(Av 7→x →Av 7→x′)
�

→∀xAv 7→x

25

to apply this principle to get the desired result, we need to know that there is a
property of being either even or odd; that’s what the comprehension schema
tells us. So one must tread carefully with arguments that second-order logic’s
ability to avoid schemas in certain axiomatizations constitutes an advantageous
sort of expressive power.

4. Paradoxes

4.1 Abstract mathematics and set-theoretic foundations

In the nineteenth century, mathematics underwent a dramatic transformation,
moving toward an “abstract” approach. Traditionally, mathematics had been
associated with relatively “concrete” matters: numbers were for counting or
measuring; geometry was about physical points and lines; etc. But in the nine-
teenth century, mathematicians moved toward a conception of mathematics in
which one studies the properties of arbitrary mathematical structures, regardless
of their association with anything concrete.

In very abstract mathematics, one must be wary of relying on intuitions. In order
to investigate what is true in an arbitrary structure, one must avoid smuggling
in assumptions that seem intuitively correct but are not made explicit in the
assumptions about the structure. This requires sophistication about logic, since
what is needed is the ability to draw only the logical consequences from the
assumptions laid down about the structure. Not coincidentally, it was in the
late nineteenth and early twentieth century when modern logic was developed.

Modern logic was also key to a second development around the same time:
a surge of interest in the foundations of mathematics. (This surge naturally
accompanied the increase in abstraction, for it is natural to wonder what we
ultimately doing, when we are studying arbitrary “structures”.)

A second key tool in the foundations of mathematics was set theory (which was
also discovered around the same time). An arbitrary “structure” was understood
to be a certain sort of set. Thus on the set-theoretic point of view, what we are
ultimately doing, when investigating mathematical structures, is investigating
the properties of various kinds of sets.

What is a set? Well, it’s something that contains other things; those other
things are its members. We name a set by enclosing a list of its members within
set braces, { and }. Thus the set containing Ted Sider and Barack Obama would

26

be named this way:
{Ted Sider,Barack Obama}

But sets can also have in�nitely many members, and we may not be able to
list the members. In such a case, in order to name the set we might give the
conditions under which something is in that set. If E is the set of all and only
the even natural numbers, we might write this:

x ∈ E if and only if x is an even natural number

Alternatively, we might write:

E =
�

x|x is an even natural number
	

(In general, “
�

x|φ(x)
	

” means: “the set whose members are exactly those things,
x, such that φ(x)”.)

In addition to containing things like people, sets can also contain other sets. For
instance, the set

�

{Ted Sider,Barack Obama}
	

has just one member. (Note the
two set braces on each side.) That one member, {Ted Sider,Barack Obama}, is
itself a set, the set whose members are Ted Sider and Barack Obama.

There is also such a thing as the null set, the set with no members at all: ∅.

Sets have members, but not in any particular order. Thus

{Ted Sider,Barack Obama}= {Barack Obama,Ted Sider}

But sometimes it is helpful to talk about set-like things that do have an order.
These are called ordered sets. We write them using angle-braces 〈 and 〉 instead
of the set-braces { and } for unordered sets. Since the order of the members
of an ordered set is signi�cant, reordering the members results in a different
ordered set:

〈Ted Sider,Barack Obama〉 6= 〈Barack Obama,Ted Sider〉

How could all of mathematics be regarded as just being about sets? The reason
is that we can construct any mathematical objects as sets. For example, the
natural numbers. We can regard the number 0 as just being the null set, the
number 1 as just being the set containing the null set, the number 2 as just
being the set containing those previous two sets, and so on:

0⇒∅ 1⇒{∅} 2⇒
�

∅,{∅}
	

. . .

27

We can regard a rational number as just being the ordered pair of its numerator
and denominator:13

1
2
⇒〈1,2〉

Ordered pairs can in turn be de�ned as sets:

〈x, y〉⇒
�

{x},{x, y}
	

We can regard real numbers as just being certain sets of rational numbers (e.g.,
“Dedekind cuts”). We can regard complex numbers as being ordered pairs of
real numbers:

a+ b i ⇒〈a, b 〉

And so on.14

Here is one more reason for the importance of sets. The development of
calculus in the 17th century was a major step forward for mathematics. But
as developed by Newton and Leibniz, the foundations of calculus were pro-
foundly unclear (cf. Berkeley’s famous critique). Gradually the foundations of
calculus became clearer (as concepts like limits and epsilon-delta de�nitions
were developed). As this happened, it became clearer that functions were an
important part of the story. (What a derivative is, is a derivative of a function.)
At �rst, functions were just regarded as being formulas in languages, but later
it became clear that they must rather be regarded as “arbitrary mappings”. But
what are those? With set theory we have an answer: a function is just a set
of ordered pairs, in which no two ordered pairs in the set share the same �rst
member.

4.2 Russell’s paradox

So sets increasingly became important in the foundations of mathematics. At
�rst, mathematicians weren’t very clear about what they were. Some didn’t
clearly distinguish sets from formulas picking them out. Many thought of sets
as being completely unproblematic, or (relatedly) as just being part of logic.

But gradually it became clear that set theory itself is a substantial part of
mathematics.

13Really it’s better to regard rational numbers as equivalence classes of such ordered pairs.
14See a textbook on set theory, e.g., Enderton (1977), for a discussion of these constructions.

28

There were many reasons for this, including the discovery by Cantor of different
sizes of in�nity (which we’ll discuss in a bit), and the discovery of the need
for the axiom of choice. But most worrisome was the discovery of certain
paradoxes. The kinds of assumptions mathematicians had been making about
sets, it turned out, were contradictory!

The simplest of these paradoxes (though not the �rst to be discovered) was
Bertrand Russell’s. The following assumption had been made (sometimes
implicitly):

Naïve comprehension for any “condition”, there exists a corresponding set—
a set of all and only those things that satisfy the condition

We use this principle implicitly when we speak of, for example, “the set of all
even natural numbers”: we form the condition “even natural number” and infer
from Naïve comprehension that there exists a set of all and only those things
that satisfy that condition.

But Russell then said: well, what about the condition “is a set that is not a
member of itself”? Naïve comprehension implies that there exists a set R (the
“Russell set”) containing all and only the sets that aren’t members of themselves.
Thus:

i) Any set that is not a member of itself is a member of R

ii) Any set that is a member of itself is not a member of R

But now, Russell asked, is R a member of itself?

The claim that R isn’t a member of itself leads to a contradiction: if R isn’t a
member of itself, then by i), R would be a member of R, and so it would be a
member of itself after all—contradiction.

But the claim that R is a member of itself also leads to a contradiction: if R is a
member of itself, then by ii) it wouldn’t be a member of R, and so wouldn’t be
a member of itself—contradiction.

So each possibility is ruled out: that R is a member of itself and that R is not a
member of itself. But one of those possibilities has to be correct—either R is a
member of itself or it isn’t. Thus the principle of Naïve comprehension has let
to a contradiction.

Russell’s argument can be put more simply. Naïve comprehension implies that

29

there exists a set, R, such that:

for all z, z ∈ R iff z /∈ z

But this implies, instantiating the variable z to R:

R ∈ R iff R /∈ R

which is a contradiction.

So the principle of Naïve comprehension isn’t true. But that principle seems to
be at the core of the very idea of a set. The very idea of a set, the main idea in
the foundations of mathematics, seems to be contradictory!

4.3 Axiomatic set theory and ZF

In the decades after the paradoxes were discovered, mathematicians gradually
found ways to develop a consistent approach to set theory, which avoids Russell’s
and other paradoxes. The approach that is now standard in mathematics is
called “Zermelo-Frankel”, or “ZF” set theory.

The ZF method for avoiding Russell’s paradox is to reject the principle of
Naïve comprehension. However, we can’t just stop talking about sets of things
satisfying various conditions we specify—the ability to do that is what makes
sets so useful. So in place of Naïve comprehension, ZF includes new principles
telling us that various sets exist. These new principles will be unlike Naïve
comprehension in being consistent, but like Naïve comprehension in implying
the existence of all the sorts of sets we need in the foundations of mathematics.

The main principles of ZF are these:

30

Extensionality Sets with the same members are identical

Null set There exists a set ∅ containing no members

Pairing For any sets a and b , there exists a set {a, b} containing just
a and b

Unions For any sets a and b , there exists a set a ∪ b containing all
and only those things that are members of a or members of b
(or both)

In�nity There exists a set, A, that i) contains the null set, and i) is
such that for any a ∈ A, a ∪ {a} is also a member of A. (Any
such set A must be in�nite, since it contains all of these sets:
∅,{∅},{{∅},∅},)

Power set For any set, A, there exists a set containing all and only
the subsets of A (this is called A’s “power set”)

Separation Suppose some set x exists, and let C be any condition.
Then there exists a set y consisting of all and only the members
of x that satisfy C .

Here is the rough idea of how they avoid Russell’s paradox. Instead of a naïve
comprehension principle telling us that certain sets exist, we have a two-step
process telling us that certain sets exist. First, we have “expansion” principles
which assert the existence of certain kinds of sets: Null set, Pairing, Unions,
In�nity, and Power set.15 Second, we have the principle of Separation, which
lets us “contract” the sets that we obtain from the expansion principles.

Separation is like the principle of Naïve comprehension, in that it assures us
that there exist sets corresponding to various conditions; but it does this in a
way that doesn’t lead to contradiction. It says, roughly:

Separation Suppose some set x exists, and letC be any condition. Then there
exists a set y consisting of all and only the members of x that satisfy C .

So the principle of separation doesn’t quite say that there exists a set corre-

15Actually there is also a stronger schema, called “Replacement”.

31

sponding to each condition, since to apply it, we need to already know that a
certain set x exists (say, by proving its existence using the expansion axioms).
We can then use any chosen condition to pick out a subset of the given set x:

C

x y

Here is why Separation doesn’t lead to Russell’s paradox. Suppose you start
with a set, x. You can then use the principle of separation, choose the condition
“is not a member of itself”, and conclude that there exists a subset of x, call it y,
that contains all and only the non-self-membered members of x:

For all z : z ∈ y iff z ∈ x and z /∈ z

But this doesn’t lead to a contradiction. It does imply this:

y ∈ y iff y ∈ x and y /∈ y

But now we can consistently suppose that y /∈ y. There is no need to suppose16

that y ∈ x, so we can’t use the right-to-left-hand direction of this biconditional
to infer y ∈ y.

Suppose there existed a universal set—a set, U , that contains every set. We could
then use the principle of separation to pick out the subset, R, of U containing
all and only the nonself-membered members of U :

For all z : z ∈ R iff z ∈U and z /∈ z
16In fact, other principles of ZF imply that y /∈ x. The axiom of regularity implies that no

set is a member of itself. Thus this principle implies that y = x (given y’s de�nition); and then,
applying this principle again, we have that y /∈ x.

32

But since every z is a member of U , this implies:

For all z : z ∈ R iff z /∈ z

which is Russell’s contradiction.

So what we’ve learned is that in ZF set theory, there does not exist a universal
set. What, then, is the picture of sets according to ZF? It is that of an “iterative
hierarchy”:

Vω

V1 0

1

...

ω

...

V0 is the set of urelements

You �rst start with a set of “urelements”—a set of things that don’t have mem-
bers. (In “pure” ZF, you don’t have urelements, and so the bottom of the
diagram is “pointy”; in applied mathematics, nonmathematical objects will be
the urelements.) Then you form a new level of sets, V1, which adds to V0 all
the sets of urelements. Then you form a new level, V2, which adds all sets you
can form from V1. And (in a certain sense) you keep going in�nitely.17

One �nal thing about ZF. My statement above of the principle of separation
wasn’t quite right. An axiom of set theory must only talk about things like
sets; it can’t talk about things like “conditions”. In fact, you state Separation
differently in second- and �rst-order logic:

17See Boolos (1971).

33

∀x∃y∀z
�

z ∈ y↔ (z ∈ x ∧A)
�

(�rst-order separation schema)

∀x∀X∃y∀z
�

z ∈ y↔ (z ∈ x ∧X z)
�

(second-order separation principle)

Thus in �rst-order ZF—that is, ZF set theory stated using �rst-order logic—
there is no single axiom of separation. Rather, there is an axiom schema. (“A” is
a schematic variable; whenever you replace ‘A’ with a formula in the language
of set theory, the result is an axiom.) But in second-order set theory, there is
a single axiom of separation—instead of the schematic variable A, there is a
universally quanti�ed second-order variable F .

Thus the situation is parallel to the situation with the principle of induction.
In �rst-order set theory, we need in�nitely many separation axioms; but even
then, as a group they say, in effect, merely that a set has subsets corresponding
to properties we can formulate in our language. This is much weaker than
the second-order separation axiom, which says that the set has subsets corre-
sponding to every property, not just those properties we can formulate. (As a
consequence of this weakness, �rst-order set theory has all sorts of unwanted
models.)

4.4 Other paradoxes, other solutions

Philosophers are generally aware that sets are entities that are “susceptible to
paradoxes”, that one needs to be cautious when reasoning about them, that
natural-seeming principles about sets (such as the principle of naïve compre-
hension) need to be restricted in some way, and so on. But many other kinds of
entities are just as susceptible to paradoxes, and this isn’t always appreciated.

For example, propositions and properties face paradoxes similar to those con-
fronting sets. Consider, for example, the property of being a non-self-exemplifying
property: it seems that it exempli�es itself if and only if it does not exemplify
itself—a contradiction. The problem even arises for predicates: the predicate
‘heterological’, meaning is a predicate that does not apply to itself, seems to apply
to itself if and only if it does not apply to itself—again a contradiction.

Here is another paradox confronting properties and propositions, which demon-

34

strates the need for caution in reasoning about such entities. First a bit of
background. The mathematician Georg Cantor famously showed that the
power set of a set is always larger than that set, in the sense that if you take each
member of the set and pair it with a unique member of the powerset, some
members of the powerset will be left over, not paired with any member of the
set. (See the diagram. In the diagram, A is a �nite set; but Cantor’s argument
applies to all sets, even in�nite ones.)

A Power set of A

a

b

c

a, b , c

a, b
a, c

b , c
a

b
c

Here is the argument. Let f be any function that maps every member of a set,
A, to some subset of A. We’ll show that some subset of A isn’t in the range of
this function—the function doesn’t map any member of A to that subset. (In
the diagram, this means showing that there is a circle in the right-hand-side of
the diagram to which no red arrow is pointing.)

Let’s begin by noting that some members of A have the following feature: they
are members of the sets to which they are mapped by f . For example, in the
diagram, a and b have the feature, since a is mapped to {a, c} and b is mapped
to {b}. But c does not have the feature, since it is mapped to the empty set.

Let’s form the set, D , of members of A that do not have the feature. That is, let:

for any x, x ∈D iff: x ∈A and x /∈ f (x) (*)

So in the diagram, D = {c}.

35

Now, suppose for reductio that every member of the powerset of A is in the
range of f . That is, suppose that for every subset, X , of A, some member of A
is mapped to X by f . It follows that some member of A is mapped to D by f .
Let’s call that member of A “d”. Thus f (d) =D .

But there can be no such d . (This is true in the diagram: no red arrow is
pointing to {c}; but we will give a general argument that doesn’t rely on the
diagram.) By (*),

d ∈D iff: d ∈A and d /∈ f (d)

But f (d) =D , so:
d ∈D iff: d ∈A and d /∈D

But d ∈A, so:
d ∈D iff d /∈D

which is a contradiction. (Note the similarity to Russell’s argument. Russell
thought of his argument by re�ecting on Cantor’s.)

Back, now, to propositions. Consider any set, S of propositions. It would be
natural to assume that there exists a unique proposition that some god is currently
entertaining all and only the propositions that are members of S. But that can’t be:
it would mean that there are at least as many propositions as there are sets of
propositions. But how could there fail to be such a proposition? Or how could
it fail to be unique? The argument seems to show that our ordinary ways of
thinking about propositions lead to contradictions.18

Back to set theory and Russell’s paradox. We discussed the ZF solution, but
it isn’t the only one. One might, for instance, give up classical logic, and say
that R ∈ R↔ R /∈ R isn’t a contradiction. Others have developed other set
theories, in which there is a universal set (e.g., Quine’s “New foundations”
system). There is also the “inde�nite extensibility” tradition. On this view,
there is something wrong with the idea that one can quantify over absolutely
everything. One can accept the principle of naïve comprehension, and so accept
a set of all and only the non-self-members. That is, given the current range
of our quanti�ers, we can then introduce a set that includes all and only the
members in that range which are not self-members. However, in doing so we

18See Kaplan (1994). We’ll also discuss the Russell-Myhill paradox in more detail later,
which is in this vicinity.

36

have expanded the domain of quanti�cation, since that set we just introduced
wasn’t in the original domain.19

And �nally, and more important for our purposes, there are attempts to solve
paradoxes by broadly “syntactic” means: by adopting languages in which at-
tempts to raise the paradox are not grammatical. As an example, take second-
order logic. In second-order logic, we can think of the predicate variables as
standing for properties, but we can’t even grammatically raise the question of
whether one of those properties applies to itself. The reason is that the way
you attribute properties in second-order logic is by predicating: e.g., you say
that object a has some property by saying ∃F F a. So the way to say that some
property has itself would seem to be this: ∃F F F . But that’s not grammatical:
the syntax of second-order logic says that if F is a one-place predicate, it needs
to combine with a term to form a sentence; it can’t combine with another
predicate. So you can’t even grammatically formulate anything like Russell’s
paradox here.

We’ll look into this more when we develop a stronger higher-order logic.

5. Higher-order logic and λ-abstraction

In the following sections we’ll develop a very expressively powerful language—
the language in which higher-order metaphysics takes place.

5.1 Third-order logic and beyond

Let’s consider languages that are even more expressively powerful than that of
second-order logic.

In second-order logic, we have expressions which attach to terms in order to
form sentences; these are predicates (whether predicate variables or predicate
constants). However, we don’t have any predicates of predicates: expressions
that attach to predicates in order to form sentences.

We could add them—we could modify the de�nition of a formula as follows:

In addition to the ordinary kind of predicates (both constant and variable),
there are some “predicates of predicates”: F ,G , For any predicate of
predicates, F , and any one-place ordinary predicate G, “F G” is a formula.

19See Fine (2007).

37

And we could modify the semantics in the obvious way:

In any interpretation, the denotation of a predicate of predicates is a set
of sets of members of the domain.

The formula “F G” is true in an interpretation if and only if the denotation
of the ordinary predicate G is a member of the denotation of the predicate
of predicates F .

This might be useful, for example, in symbolizing a sentence like:

Sally and John have exactly the same virtues

∀X (VX → (X s↔X j))

(Although notice that the syntax of the English sentence ‘Sally and John have
exactly the same virtues’ seems more like a �rst-order sentence quantifying
over properties and employing a predicate ‘has’ for instantiation.)

Once we have predicates of predicates, it is natural to introduce quanti�ers
binding variables in that syntactic position, so that in addition to saying “Sally
and John have exactly the same virtues” as above, we can also express a sort of
existential generalization of that sentence:

There is some type of property such that Sally and John have exactly the
same properties of that type

∃Y∀X (YX → (X s↔X j))

This is third-order logic.

And we could keep iterating, introducing predicates that can apply to predicates
of predicates, and variables for such predicates, resulting in fourth-order logic,
even higher-order predicates, and so on. Also we could allow these higher-
order predicates to be multi-place. But there is a further sort of syntactic
generalization that we will explore.

5.2 Higher-order logic and types

So far we have discussed languages in which one can quantify into predicate
position, the position of predicates of predicates, and so on. I want next to
discuss an even more expressive sort of language, in which one can quantify

38

into many more grammatical positions. In a sense, quanti�cation can be into
any grammatical position, in a broad sense of grammatical position.

5.2.1 More about syntax

To introduce this language, let’s think a little more about grammar/syntax in
general.

Syntax is about well-formedness—about what kinds of expressions “make sense”.
Syntactic rules tell you what kinds of expressions combine with what other
kinds of expressions to form still other kinds of expressions. We have seen a
few such rules, such as:

If you take a one-place predicate, F , and attach it to a term, t , the result
F t is a formula

If you take the expression ∼, and attach it to a formula, A, the result ∼A
is a formula

There is a common pattern here:

If you take an expression of category X , and attach it to an expression of
category Y , the result is an expression of category Z

For the �rst rule, X was one-place predicate, Y was term, and Z was formula; for
the second rule, X was the negation sign, Y was formula, and Z was formula.

This makes it natural to ask whether it would make sense to introduce new
syntactic categories other than those we have been examining so far. For
example, in each of the two rules above, the “output” of the rule (the expression
of category Z) was a formula. But could we have a rule letting us form complex
expressions, in which the output (Z) was, say, the category one-place predicate?

We can. We can, for instance, introduce a syntactic category of predicate functors,
which combine with one-place predicates to form new one-place predicates.
The syntactic rule governing predicate functors would be this:

If you take a predicate functor q, and attach it to a one-place predicate,
F , the result qF is a one-place predicate

Here X is predicate functor, Y is one-place predicate, and Z is one-place predi-
cate. Natural language has something like predicate functors, namely adverbs:

39

‘quickly’ can combine with the predicate ‘runs’ to form the predicate ‘runs
quickly’.

Once we have seen syntactic categories and rules in this light, a possibility for
generalizing them suggests itself. For any syntactic categories Y and Z , we
ought to be able to introduce a new category, X , with this feature: expressions
of category X combine with expressions of category Y to form expressions of
category Z . Since this process can be iterated, there will be in�nitely many syn-
tactic categories. Moreover, in all categories, we will allow quanti�ed variables
of that category. The result is a certain sort of “higher-order logic”, based on
the “theory of types”.20

5.2.2 Types

If we are going to develop a language with in�nitely many syntactic categories,
we need a way of talking about syntactic categories as entities, so that we can
make generalizations about all syntactic categories (“for any syntactic categories,
a and b , . . .”.) Syntactic categories, thought of as entities, are called types.

Let’s �rst get a handle on what these types are supposed to do for us. Each one
is an entity representing a syntactic category. Thus we will speak of expressions
in our language of higher-order logic as being of types: an expression is of type
a if and only if that expression falls under the grammatical category that the
type a represents. For instance, as we’ll see in the next paragraph, the type that
represents the grammatical category of formulas is: t . Thus expressions that
are formulas, such as F a ∧Gb or ∃xF x, are expressions of type t . (What is the
entity t? It doesn’t matter; think of it as being the letter ‘t ’ if you like. What
matters about the types is what they represent, not what they are.)

OK, let’s de�ne the in�nite class of types:

20The theory of types we’ll be discussing derives from Alonzo Church (1940), who was
improving the theory of types in Russell and Whitehead’s Principia Mathematica. There are a
number of different kinds of systems that go by the name of “type theory”; this is just one. For
a quick peek at some of the alternatives, see section 5.4.

40

There are two unde�ned types, e and t

(e is the type of singular terms; t is the type of formulas)

For any types, a1, . . . ,an and b , there is another type 〈a1, . . . ,an, b 〉

(〈a1, . . . ,an, b 〉 is the type of expressions that combine with ex-
pressions of types a1, . . . ,an to form an expression of type b)

The unde�ned types e and t are so-named because they are the types of ex-
pressions that name entities and can be true or false, respectively. Thus in-
dividual variables (x, y, . . .) and names (a, b , . . .) are of type e ; and formulas
(F x,∀x(F x → Gx), . . .) are of type t . As for complex types 〈a1, . . . ,an, b 〉, an
expression E that is of this type is the sort of expression that can combine with
n expressions, of types a1, . . . ,an, respectively, to form an expression of type
b . Thus such an expression E is an “n-place” expression: in order to make a
syntactically well-formed result, E needs to combine with n other expressions,
of the appropriate types. The “appropriate types” are a1, . . . ,an—the types of
the expressions with which E can combine. And b is the type of the resulting
expression—the type of the expression that results when E is combined with
those n expressions of appropriate types. One might think of E as a kind of
function, mapping expressions to expressions: a1, . . . ,an are the types of its
“inputs”, and b is the type of its “output”.

In the simplest case where n = 1, the type 〈a, b 〉 is that of an expression which
can combine with an expression of type a to make an expression of type b . In
the terminology of the previous section, X is 〈a, b 〉, Y is a, and Z is b .

Let’s look at some examples.

Example 1: the type 〈e , t 〉. Expressions of this type combine with something of
type e to make an expression of type t . That is: they combine with terms to
make formulas. Thus they are one-place predicates! (That is, they are one-place
predicates of individuals.)

Example 2: the type 〈e , e , t 〉. Expressions of this type combine with two expres-
sions of type e to make an expression of type t . That is, they combine with pairs
of terms to make formulas. Thus they are two-place predicates (of individuals).
Similarly, a three place-predicate is of type 〈e , e , e , t 〉, and so on.

41

Example 3: the type 〈t , t 〉. Expressions of this type combine with a formula to
make a formula. An example is the symbol for negation, ∼. If you combine
it with a formula, A, the result ∼A is another formula. (The operators 2 and
3 from modal logic are further examples.) Expressions of type 〈t , t 〉 are thus
one-place sentence operators.

Example 4: the type 〈t , t , t 〉. Expressions of this type combine with two formulas
to make a formula. That is, they are two-place sentence operators. Examples
include the symbol for conjunction, ∧, the symbol for disjunction, ∨, and the
conditional symbol →. (Another example is the counterfactual conditional
symbol� in counterfactual logic.)

Example 5: the type 〈〈e , t 〉, t 〉. Expressions of this type combine with an ex-
pression of type 〈e , t 〉 to make an expression of type t . That is, they combine
with predicates to make formulas. Thus they are what we called higher-order
predicates in section 5.1.21 For example, we might represent ‘is patient’ as an
ordinary predicate P , and ‘is a virtue’ as a higher-order predicate V , and then
represent (with a little violation to English syntax) ‘patience is a virtue’ as “V P”.

21There is a confusing terminological issue I’d like to mention. Recall the “higher-order”
predicates of section 5.1: predicates of predicates, predicates of predicates of predicates, and
so on. What numerical orders should be assigned to such predicates? Different authors use
different terminology here, and there is no happy choice. On one hand, it’s natural to call
predicates of predicates second-order predicates, since they’re “one jump up” from ordinary
predicates. On the other hand, if we called them second-order predicates, we would expect
them to have the same syntactic type as the variables that we call “second-order variables”;
but what are usually called second-order variables are variables of type 〈e , t 〉—the “predicate
variables” of section 3.1. (After all, the latter are the variables that are distinctive of second-order
logic.) Relatedly, if predicate constants of type 〈〈e , t 〉, t 〉 are “second-order”, then presumably
predicate constants of individuals (such as P for ‘is patient’ or ‘F ’ for ‘is a fox’) should be called
“�rst-order”. But that means we’re calling an expression of type 〈e , t 〉 “�rst order” if it’s a
constant and “second-order” if it’s a variable, which is unfortunate.

The problem is that there are two distinct sorts of “jumps” that we feel inclined to call an
increase in “order”. On one hand, there is the move from a language in which you can’t quantify
into (ordinary) predicate position to a language in which you can. The �rst sort of language is
standardly called “�rst-order logic” and the second is standardly called “second-order logic”.
On the other hand, there is the jump from a language in which you only have predicates of
individuals—that is, expresions of syntactic type 〈e , t 〉 (whether constant or variable)—to a
language in which you have predicates of predicates—that is, expressions of syntactic type
〈〈e , t 〉, t 〉 (whether constant or variable). The latter also feels like a jump in order, which
explains the impulse to call predicates of predicates “second-order”. But it’s a different sort of
jump than the �rst jump; and the two aren’t “in sync”.

42

Example 6: the type 〈〈e , t 〉, 〈e , t 〉〉. Expressions of this type combine with expres-
sions of type 〈e , t 〉 and make expressions of type 〈e , t 〉. That is, they combine
with one-place predicates to form one-place predicates. Adverbs! (Or: pred-
icate functors.) The adverb ‘quickly’ combines with the one-place predicate
‘runs’ to form the one-place predicate ‘runs quickly’.

All this, then, inspires the following syntax for the language of our higher-order
logic.

1. For each type, there are in�nitely many variables which are expres-
sions of that type, and there may also be zero or more constants
which are expressions of that type. (Any chosen set of constants is
called a “signature”, and determines a language.)

2. ∼ is a constant expression of type 〈t , t 〉; ∧, ∨,→, and↔ are con-
stant expressions of type 〈t , t , t 〉

3. If E1, . . . , En are expressions of types a1, . . . ,an, and E is an expression
of type 〈a1, . . . ,an, b 〉, then E(E1, . . . , En) is an expression of type b

4. If v is a variable of type a and E is an expression of type t then
∀vE and ∃vE are expressions of type t

Notice, by the way, a difference between this syntax and, e.g., the syntax for
�rst-order logic in section 2.1. In that earlier syntax, we didn’t assign ∼ any
syntactic category (since the only syntactic categories mentioned there were
term and formula, and ∼ isn’t either of those). Rather, we simply gave a rule
that speci�es the syntactic role of ∼—a rule saying how ∼ combines with an
expression of an appropriate syntactic category to yield another expression of
a certain syntactic category. That rule was the following: “if A is a formula
then so is ∼A”. But here, we don’t have any such rule for ∼, or for any of the
other propositional connectives. Why not? Because we have instead explicitly
assigned types to them. ∼, for example, is said in clause 2 to be of type 〈t , t 〉: it
combines with one expression of type t to form an expression of type t . As a
result, clause 3 covers the syntax of ∼ and the other propositional connectives
(along with covering the syntax of variables and nonlogical constants). For
instance, since∼ is of type 〈t , t 〉, it follows from clause 3 that for any expression

43

E of type t (i.e., any formula),∼(E) is an expression of type t .22

5.2.3 Meaning: Frege and functions

What do all these expressions of different types mean?

For the types that have corresponding expressions in natural language, this
is comparatively easy. For example, since we are already familiar with predi-
cates/verb phrases (like ‘runs’) and adverbs/predicate functors (like ‘quickly’),
we already have a handle on what sorts of meanings are possessed by expres-
sions of types 〈e , t 〉 and 〈〈e , t 〉, 〈e , t 〉〉. But what about expressions of much more
complex types, for which there are no natural-language counterparts?

In such cases, it’s natural to think of the meaning of an expression in terms of
what it does—in terms of how the meaning of that expression interacts with
the meanings of other expressions with which it is combined, to generate
the meanings of more complex expressions. And there is a systematic way of
thinking about meaning in this way: Frege’s (1997b).

Let’s begin by thinking about meaning informally. (Later on we’ll consider
a Frege-inspired formal semantics for higher-order logic.) For Frege, in one
sense of meaning, the meaning of a proper name (like ‘Ted’) is an individual
(me), and the meaning of a sentence (like ‘Ted is a philosopher’) is a truth value,
of which there are two: T (or 1, or “The True”); and F (or 0, or “The False”).

Now, Frege (1952/1892) famously pointed out that expressions that mean the
same, in this sense of meaning, can mean different things in another sense
of meaning. ‘Ted is a philosopher’ and ‘Barack Obama was born in Hawaii’
are both true sentences, and so each denote the same thing, namely T (The
True); nevertheless there is clearly some sense of meaning in which they have
different meanings. Similarly, ‘2+ 3’ and ‘1+ 4’ both denote the number 5, but
again, they have different meanings in some sense. Frege dealt with this by
distinguishing one kind of meaning, called Bedeutung, or reference, or as I will
say, denotation, from another sort of meaning called Sinn, or sense (which is
roughly the rule by which the denotation is determined). Here I will consider
only denotation, and ignore sense. So I can rephrase the claims about meaning
from the previous paragraph: the denotation of a name is an individual, and the
denotation of a sentence is a truth value.

22Note that we are still treating quanti�ers in the old way. But they too can be assigned
types once we have introduced λ-abstraction; see section 5.4.3.

44

(It’s admittedly somewhat awkward to think of sentences as denoting their truth
values, particularly if, when we get to quanti�cation into sentence position, we
think of ∀P (variable of type t) as meaning “for all propositions. . .”. But let’s
stick with Frege’s original approach for now, for simplicity.)

So: names denote individuals and sentences denote truth values. What about
predicates and connectives? For Frege they denote functions.

The notion of a function is one that we’ve mentioned a few times before. It’s a
familiar notion from mathematics. A function is a rule that yields an output
if you give it appropriate inputs. For example, f (x) = x2+ 4 is a function that
yields the output 4 if you give it the input 0, and yields the output 8 if you give
it the input 2. Another way of putting this: the function f “maps 0 to 4” and
“maps 2 to 8”. Now, f is a “one-place” function, since it requires one input
in order to yield an output. Other functions have more than one place. For
example, the addition function, which we might represent as g (x, y) = x + y,
maps two numbers to a single output: it maps, e.g., 1,2 to 3, and maps 4,7 to 11.
The examples so far have been functions of numbers, but functions can have
objects of any sort as inputs and outputs. The biological mother of function,
for example, is a function from persons to persons, which maps each person to
his or her biological mother.23

According to Frege, predicates denote functions from individuals to truth values.
For example, the one-place predicate ‘runs’, for Frege, denotes the function
that maps any object to T if it runs and to F if it does not run. That is, ‘runs’
denotes this function:

r (x) =
¨

T if x runs
F if x does not run

23In section 4.1 we mentioned the set-theoretic de�nition of a function, according to which a
function is a set of ordered pairs. But in some contexts one might prefer some other conception
of what functions are. i) According to the set-theoretic de�nition, any “two” functions that
assign the same values to all arguments are in fact identical. For instance, the “add one” set-
theoretic function on natural numbers is the very same as the “add two and then subtract one”
set-theoretic function. One might prefer a more “�ne-grained” conception of function in
certain circumstances. ii) According to the set-theoretic de�nition, functions are sets. Thus,
given ZF, there cannot exist functions de�ned on absolutely all entities (including all sets).
Consider, for example, the function that Frege would call the denotation of the predicate ‘∈’
of set-membership: the two-place function that maps any a and any set b to T if and only if
a ∈ b . Given ZF there is no such set-theoretic function.

45

Similarly, the two-place predicate ‘bites’ denotes this function:

b (x, y) =
¨

T if x bites y
F if x does not bite y

In general, n-place predicates for Frege denote n-place functions from entities
to truth values.

As for connectives, they denote functions from truth values to truth values. For
instance, the one-place connective ‘not’ denotes this function, n:

n(T) = F
n(F) = T

This function “reverses” truth values, mapping truth to falsity and falsity to
truth; it is the negation function. Similarly, according to Frege, the two-place
connectives ‘and’ and ‘or’ denote the conjunction and disjunction functions c and
d :

c(T ,T) = T d (T ,T) = T
c(T , F) = F d (T , F) = T
c(F ,T) = F d (F ,T) = T
c(F , F) = F d (F , F) = F

These should be familiar from introductory logic; Frege’s idea is that the
functions that truth tables depict are the meanings of the connectives.

5.2.4 Formal semantics for higher-order logic

In this section I’ll give a partial sketch of a formal semantics for our language
of higher-order logic inspired by Frege’s functional approach to denotation.24

As in �rst-order logic, an interpretation will consist in part of a domain—a
nonempty set. And as before, an interpretation assigns denotations to nonlog-
ical expressions. In the case of names—constant expressions of type e , these
denotations will be exactly what they were earlier: members of the domain. But

24The de�nition sketched here is not the only possible one. There are alternatives, for
instance alternatives in the spirit of Henkin interpretations for second-order logic (section
3.5.1).

46

for expressions of other types, denotations will be different sorts of entities—
albeit always entities that are “based” on the domain.

First let’s give a general statement of the kind of entity denoted by expressions
of any type in a given interpretation. For each type, a, we’ll specify what kind
of object counts as an “a denotation” (or: “denotation of type a”)—the kind
of thing that can be denoted by an expression of type a.25 The de�nition �rst
speci�es the kinds of denotations for the unde�ned types, and then it gives a
rule covering complex types:

Kinds of denotations, for a given domain D

e denotations are members of D

t denotations are truth values (i.e., T , F)

An 〈a1, . . . ,an, b 〉 denotation is an n-place function that maps an a1 de-
notation, an a2 denotation, . . . , and an an denotation, to a b denotation

Consider, for example, the type 〈〈e , t 〉, 〈e , t 〉〉—the type of predicate functors.
Given the above de�nition, an 〈〈e , t 〉, 〈e , t 〉〉 denotation for a domain D is a
function that maps 〈e , t 〉 denotations to 〈e , t 〉 denotations. And 〈e , t 〉 denota-
tions are themselves functions—functions from D to truth values. Thus an
〈〈e , t 〉, 〈e , t 〉〉 denotation is a function that maps any function from D to truth
values to another function that maps D to truth values.

Recall from the end of section 5.2.2 that in our syntax for higher order logic,
the logical constants ∧, ∨, etc. were treated as being expressions of certain
types.

Now we can give a proper de�nition of an interpretation:

25In some contexts, types are thought of as being, in the �rst instance, types of semantic
values, rather than as types of expressions, as I have been thinking of them.

47

De�nition of interpretation for higher-order logic

An interpretation consists of a domain, D , and a speci�cation, for each
nonlogical expression of type a, of an a denotation for D .

Additionally, any interpretation assigns to the propositional connec-
tives as denotations their Fregean truth-functions. (For example, the
denotation of ∼ in any interpretation is the one-place truth function
mapping T to F and F to T .)

So, for example, if G is some nonlogical predicate (type 〈e , t 〉), then any inter-
pretation must assign to G some particular function from its domain to truth
values.

Next we give a general rule for computing the denotations of complex expres-
sions based on the denotations of their parts:

Denotations of complex expressions (in a given interpretation)

If E1, . . . , En are expressions of types a1, . . . ,an, with denotations d1, . . . , dn,
and expression E has type 〈a1, . . . ,an, b 〉 and denotes a function f , then
the denotation of the complex expression E(E1, . . . , En) (which has type
b) is: f (d1, . . . , dn)

Thus denotations of complexes are derived by applying functions to arguments:
the function that is the “outer” expressions’s denotation is applied to the argu-
ments that are the “inner” expressions’ denotations. Indeed, the attraction of
the Fregean functional approach to denotation is that it leads to such a simple
rule.

To see all this in action, let’s work through an example. Consider an interpreta-
tion in which the following formula symbolizes “Ted doesn’t run quickly”:

∼q(R)(c)

Thus c is a name symbolizing “Ted”, R is a one-place predicate symbolizing
“runs”, and q is a predicate functor symbolizing “quickly”. Thus the denotations
of these expressions will be of the following sorts (‘fx’ abbreviates ‘function’):

48

type kind of denotation particular denotation
c e member of the domain Ted
R 〈e , t 〉 fx from entities to truth values the fx r that maps o to T iff o runs
q 〈〈e , t 〉, 〈e , t 〉〉 fx from 〈e , t 〉 fxs to 〈e , t 〉 fxs the fx q that maps g to the “g -ing quickly” fx
∼ 〈t , t 〉 fx from TVs to TVs the fx n that maps T to F and F to T

Now let’s �gure out what the denotation—i.e., truth value—of the entire
sentence ∼q(R)(c) is. To make this more readable, let’s write “|E |” for “the
denotation of expression E”. Thus, what we’re trying to �gure out is what
|∼q(R)(c)| is. We’ll start by writing down the denotations of simple expressions,
and then work up to the denotations of more complex expressions.

|R|= r (see table)
|q|= q (see table)

|q(R)|= q(r) (rule for denotations of complexes)
|c |=Ted (see table)

|q(R)(c)|= q(r)(Ted) (rule for denotations of complexes)
|∼|= n (see table)

|∼q(R)(c)|= n(q(r)(Ted)) (rule for denotations of complexes)

Thus ∼q(R)(c) denotes n(q(r)(Ted)). But what is n(q(r)(Ted))? Well, q(r) is
the function that maps any member of the domain to T iff it runs quickly. (This
is so because q is the function that maps a function from the domain to truth
values to the corresponding “quickly function” from members of the domain to
truth values.) In fact, I do run quickly. (Very quickly.) So q(r)(Ted) = T . And
so, n(q(r)(Ted)) = F . Our sentence denotes The False.

In a full presentation of the semantics, we would need to give a de�nition of
the denotation for all expressions of all types, including expressions containing
variables (see next section) and connectives. I won’t do this here, since my goal
has been to say just enough to give the intuitive feel for meaning in higher-order
logic. However, it’s important to note that there are philosophical questions
about how formal, set-theoretic semantics of the type sketched here relates
to intended meaning. Such questions are especially pressing for higher-order
logic. For instance, under one common interpretation of the language of
higher-order logic, it is common to assume that a comprehension principle
holds, so that (for example) the sentence ∃F∀x(F x ↔ x = x) is true. But
then, if the quanti�er ∀x includes all sets in its range, it would seem that the

49

quanti�er ∃F cannot range over sets, since a set of all self-identical sets would
be a set of all sets whatsoever, which does not exist given ZF set theory. So:
take the semantics sketched in this section as being a sort of model (in the
informal, philosophy-of-science sense) of one possible intended meaning of
the language of higher-order logic—a model which may not be fully accurate
but may nevertheless be useful for certain purposes.

5.2.5 Variables

Back to syntax. Consider the symbolization of “Ted is sitting and Ted is eating”:

Sc ∧ Ec

In �rst-order logic we can generalize into subject position:

∃x(S x ∧ E x)

And in second-order logic we can generalize into predicate position:

∃X (X c ∧ Ec)

So why not also allow generalization into the ‘and’ position:

∃ (Sc Ec)

to mean, roughly, that there is some relation between propositions that holds
between the proposition that Ted is sitting and the proposition that Ted is
eating? ‘ ’ here would be a variable with the same type as ‘∧’, namely: 〈t , t , t 〉.

In higher-order logic, we do allow this. More generally, since we are allowing
constants of any of the in�nitely many types, we will also allow variables of each
of those types, together with quanti�ers binding them.

For example, we will have a variable4 of the same type as ∼, namely 〈t , t 〉, so
that we can write:

∃44Sc

meaning, roughly, that there is some property of propositions had by the
proposition that Ted is sitting. (‘4’ and ‘ ’ and other symbols I’m using here
aren’t standard; I’ll talk later about how we write variables of different types.)

50

Similarly, suppose q is a constant predicate functor (type 〈〈e , t 〉, 〈e , t 〉〉), rep-
resenting the adverb ‘quickly’, so that we can symbolize ‘Ted runs quickly’
as:

q(R)(c)

Then we can also write:
∃x x(R)(c)

where x is a variable of type 〈〈e , t 〉〈e , t 〉〉—a “predicate functor variable”.

We can even have variables of type t , i.e., the type of formulas. If P is such a
variable, then “∃P P” means roughly that there is some true proposition.

5.2.6 Typing symbols

We need some way of writing symbols, whether variables or constants, that
indicates their types, and our ad hoc method for doing this so far (x, X , 4,
x , P) won’t work in general. There are in�nitely many types (for any types
a1, . . . ,an, b , there is a new type 〈a1, . . . ,an, b 〉), so we can’t go on picking a
different font or symbol set for each type—we’ll run out.

Instead, in of�cial contexts anyway, let’s write all variables as “x”, and all
constants as “c”, and indicate the type of the variable or constant by including
that type as a superscript on the symbol. So for any type, a, xa will be a variable
of type a, and ca will be a constant of type a. We can get as many variables and
constants of any type as we like by using subscripts, e.g.: xa

1 , xa
2 ,

Unof�cially, however, we’ll continue to use the old ad-hoc methods, to improve
readability. Thus we’ll write:

of�cial unof�cial
x e x, y, . . . individual variables
c e c , d , . . . names
x t P,Q . . . sentence variables
x 〈e ,t 〉, x 〈e ,e ,t 〉 X , F , R . . . predicate variables
x 〈t ,t ,t 〉, x 〈t ,t 〉 4, sentence-operator variables
c 〈〈e ,t 〉,t 〉 F ,G , . . . higher-order predicate constants
x 〈〈e ,t 〉,t 〉 X , Y , . . . higher-order predicate variables
c 〈〈e ,t 〉,〈e ,t 〉〉 q, r , . . . predicate-functor constants
x 〈〈e ,t 〉,〈e ,t 〉〉 x , y, . . . predicate-functor variables

51

5.3 λ-abstraction

5.3.1 Complex predicates

In standard logic, the symbol for conjunction, ∧, is a sentential connective: the
only place that it can grammatically occur is between two formulas: A∧B .

The natural-language word ‘and’ is more �exible. In addition to functioning as
a sentential connective, as in ‘Ted is sitting and Ted is eating’ (and in addition
to constructing plural terms such as ‘Daisy and Luke’—recall section 2), it can
also occur in complex predicates, as in the sentence ‘Ted is sitting and eating’.
Here ‘is sitting and eating’ is, grammatically, a predicate (it attaches to ‘Ted’ to
form a sentence); but it is a complex predicate, since it is made up of two other
predicates, ‘sitting’ and ‘eating’, which are combined with ‘and’.26

So: natural languages (some, anyway) have complex predicates. Logical lan-
guages can be constructed which also have complex predicates. Under a com-
mon way of doing so, a complex predicate like ‘is sitting and eating’ is repre-
sented using a new symbol, λ (“lambda”), as follows:

λx(S x ∧ E x)

(Or “λx.(S x ∧ E x)”, “λx[S x ∧ E x]”, or “(λx.S x ∧ E x)”—different authors use
different notation.) It can be read in any of the following ways:

“is an x such that S x and E x”

“is such that: it is sitting and it is eating”

“is sitting and eating”

λx(S x ∧ E x) is a one-place complex predicate; but we can also allow complex
predicates with more than one place. For example, if B is a two-place predicate
meaning “bites”, then the following is a two-place predicate meaning “bites or
is bitten by”:

λxy(B xy ∨By x)

In general, the syntax of λ is:

26When I’m teaching introductory logic students how to symbolize natural language sen-
tences like ‘Ted is sitting and eating’, I tell them that this sentence “means the same as” or
“is short for” the sentence ‘Ted is sitting and Ted is eating’, and hence can be symbolized as
Sc ∧ Ec . These claims are perhaps correct in some sense, but not if taken as claims about
English syntax. In ‘Ted is sitting and eating’, ‘is sitting and eating’ is a syntactic unit.

52

Where x1, . . . , xn are any variables and A is any formula, λx1 . . . xnA is
an n-place predicate

λx1 . . . xnA can be read as meaning “are x1, . . . , xn such that A”.

Expressions formed with λ are often called “λ abstracts”, and the process by
which they are formed is called “λ abstraction”.

How are λ abstracts used in sentences? Just like other predicates: you attach
them to terms to form sentences. For example, if c is a name referring to me,
then the following is a sentence symbolizing “Ted is such that he is sitting and
eating”:

λx(S x∧E x)c

(I’ll sometimes add parentheses to sentences involving λ-abstracts to improve
readability; e.g.: λx(S x∧E x)(c).)

It’s important to be clear about the syntax of λ expressions, so let me re-
emphasize it: λxA is a predicate. Thus we should not think of ‘λx(S x∧E x)’
as symbolizing ‘the property of sitting and eating’. It rather symbolizes ‘is
sitting and eating’.

What is the difference? ‘The property of sitting and eating’ is a term, whose
function is to name something, whereas ‘is sitting and eating’ is a predicate,
whose function is to describe something. In order to construct a sentence using
the former, you need to combine it with a predicate. For instance, you can use
the two-place predicate ‘instantiates’ to say:

Ted instantiates the property of sitting and eating

You can’t combine it with a term to form a sentence:

Ted the property of sitting and eating

That’s ungrammatical—terms can’t combine with terms to form sentences.
But you can combine the predicate ‘is sitting and eating’ with a term to form a
sentence:

Ted is sitting and eating

53

What might a formal semantics for λ abstracts look like? Well, they will have
meanings just like predicates. Let’s continue with the Fregean approach from
section 5.2.4, in which (�rst-order) predicates denote functions from the domain
to truth values. Then λvA, also being a predicate, also denotes a function from
the domain to truth values: the function that maps any member of the domain,
o, to T if and only if the formula A is true of o.

For example, consider an interpretation in which S represents “sitting” and E
represents “eating” (i.e., S denotes the function mapping any o in the domain
to T if and only if it is sitting, and E denotes the function mapping any o in the
domain to T if and only if it is eating). Then λx(S x ∧E x) denotes the function
that maps any o in the domain to T if and only if ‘S x ∧E x’ is true of o—that is,
if and only if o is sitting and o is eating. So if c names me in that interpretation,
then the sentence λx(S x∧E x)c is true if and only if Ted is sitting and Ted is
eating—i.e., if and only if the sentence Sc ∧ Ec is true.

Similarly, let B be a two-place predicate representing “bites” in some inter-
pretation. Then λx∃yBy x is a predicate symbolizing “being an x such that
something bites x”, and denotes the function that maps o to T if and only
if something bites o; and so, the sentence λx∃yBy x(c) is true if and only if
something bites Ted—i.e., if and only if the sentence ∃yByc is true.

Note, then, that λx(S x ∧ E x)c is, in a sense, just a long-winded way of saying
Sc ∧Ec , and λx∃yBy x(c) is just a long-winded way of saying ∃yByc . (Similarly,
“Ted is such that he is: sitting-and-eating” is just a long-winded way of saying
“Ted is sitting and Ted is eating”, and “Ted is such that: something bites him” is
just a long-winded way of saying “Something bites Ted”.) This fact helps a lot in
getting the feel for λ abstraction: it’s helpful to think of λxA(c) as just meaning
Ax 7→c (i.e., the result of substituting c in for all the free xs in A), and similarly
for multi-place complex predicates. Thus we can think of λx(S x ∧ E x)c as
just meaning Sc ∧Ec , λx∃yBy x(c) as just meaning ∃yByc , λxyB xy(cd) as just
meaning Bcd , and so on.

If λ just lets us say things more long-windedly, what’s the point? We’ll think
about this more later, but the point is to introduce single syntactic units with
complex meanings. Without λ, you can’t formulate a single predicate which
means “is sitting and eating”.

54

5.3.2 Generalizing λ: syntax

Let’s think about what the previous section accomplished. In standard predicate
logic, all predicates are simple: predicates like F ,G, R, But once we have
λ, we can construct complex predicates. Thus for the syntactic category of
predicate, λ allows us to construct complex expressions of that category.

Once we move from standard predicate logic to higher-order logic, with its
very general notion of a syntactic category (type), it is natural to introduce a
corresponding generalization of λ abstraction, which lets us construct complex
expressions of any category.

Let’s think in more detail about the syntax of the λ abstracts we introduced in
the previous section. An example was:

λx(S x ∧ E x)

There are three important syntactic elements here. (1) The variable attached
to λ, namely x. Call this the “abstraction variable”. This is an individual
variable—type e . (2) The expression coming after λx, namely S x∧E x. Call this
the “abstraction matrix”. This is a formula—type t . (3) The entire λ abstract,
namely λx(S x∧E x). This is a predicate—type 〈e , t 〉. So: our old λ abstracts were
formed by attaching λ to an abstraction variable of type e , and then appending
an abstraction matrix of type t , resulting in a λ abstract of type 〈e , t 〉.

To generalize this for higher-order logic: (1) we let the abstraction variables be
of any types, a1, . . . ,an; (2) we let the abstraction matrix also be of any type, b ;
and then (3) the resulting λ abstract has type 〈a1, . . . ,an, b 〉. To summarize:

Syntax for λ generalized

For any variables, xa1
1 , . . . , xan

n , of types a1, . . . ,an, and any expression,
E , of type b , the expression

λxa1
1 . . . xan

n E

is of type 〈a1, . . . ,an, b 〉

(Notice how the complex predicates of section 5.3.1 are special cases of this
general rule.)

55

5.3.3 Generalizing λ: semantics

What do lambda abstracts of arbitrary type mean?

As we saw in section 5.3.1, a λ abstract λxA of type 〈e , t 〉 means “is an x such
that A”. We can give similar glosses in some other cases. For instance, we can
think of λX A as meaning “is a property, X , such that A”, and λPA as meaning
“is a proposition, P , such that A”. (In the previous sentence, the �rst λ abstract
was type 〈〈e , t 〉, t 〉, and the second was type 〈t , t 〉.)

But this only gets us so far. The natural language gloss “is a . . . such that. . .” is
apt only when the abstraction matrix is a formula (type t), since what comes
after “such that” needs to be the kind of thing that can be true or false. We still
need an explanation of the meanings of λ abstracts whose matrices are not of
type t (i.e., λ abstracts of type 〈a1, . . . ,an, b 〉 where b 6= t).

Sometimes the best strategy for understanding expressions of complex types
is not trying to �nd natural-language glosses for them (since such glosses
might not exist), but rather trying to understand what they do. By this I mean:
understanding how such expressions help determine the meanings of larger
expressions of which they are parts.

To understand this for λ abstracts, let’s return to a lesson from the end of section
5.3.1. If you attach λx(S x ∧ E x) to the name c , the result:

λx(S x ∧ E x)c

is (I said) just a long-winded way of saying:

Sc ∧ Ec

In general, λxA(c) means the same as Ax 7→c (i.e., what you get if you start
with A and change all the free xs to cs), and similarly for multi-place complex
predicates. So what λx(S x ∧ E x) does is this: when attached to a name, c , it
results in a sentence meaning Sc ∧ Ec .

The process of changing, e.g., λx(S x∧E x)c to Sc ∧Ec is called “β conversion”
or “β reduction”. In general it works as follows.27

27Important quali�cation: no free variables in A1, . . .An may be “captured” by quanti�ers in
Exa1

1 7→A1,...,xan
n 7→An

. To illustrate the importance of this restriction, consider λx∃yB xy, a complex
predicate meaning “bites someone”. Without the restriction, λx∃yB xy(y) would reduce by β

56

β conversion

The result of applying the λ abstract λxa1
1 . . . xan

n E to expressions A1, . . . ,An
(of types a1, . . . ,an), namely:

λxa1
1 . . . xan

n E(A1, . . . ,An)

reduces by β conversion to:

Exa1
1 7→A1,...,xan

n 7→An

Actually it’s contentious that the result of β conversion means the same as the
original. But clearly there is some very close semantic relationship between the
two; and in any case thinking of them as meaning the same is a useful heuristic
for grasping the meanings of λ abstracts.

β conversion can give us an intuitive handle on the meanings of other λ
abstracts. Take another example, λX (X c ∨X d) (where c and d are names and
X is a type 〈e , t 〉 variable). In this case we do have a natural-language gloss:
“being a property that is had either by c or by d”. But we can also think about
its meaning via what it does. If you attach it to a one-place predicate F , you get
this sentence:

λX (X c ∨X d)F

which means the same thing as (via β conversion):

F c ∨ F d

Thus what λX (X c ∨ X d) does is this: it converts any predicate, F , into a
sentence meaning that c is F or d is F .

For more practice, let’s consider some further examples.

conversion to ∃yByy. But the former means “y is such that it bites someone” (with y a free
variable) whereas the latter means “something bites itself”.

There are other kinds of conversions that also result in expressions that are equivalent (in
some sense). “α conversion” is what is often called “relettering of bound variables” in logic:
λxF x α-converts to λyF y. “η conversion” is less familiar: λxF x η-converts to F .

57

Example 1:
λP P

(P is a variable of type t .) Since both the abstraction variable and the abstraction
matrix are of type t , the entire λ abstract has type 〈t , t 〉. That is, it combines
with a formula to make a formula. So it’s a one-place sentence operator (like
∼).

What does it mean? Since the matrix is of type t , we can gloss it using “such
that”: it means “is a proposition, P , such that P”. Or, one might say, “is a true
proposition” (though really the concept of truth is not involved).

But let’s also think about what it does. If you attach it to a formula, A, you get
this formula:

λP P (A)

which reduces by β conversion to:

A

Thus what λP P does is attaches to a sentence A to form a sentence that means
A. So it is a redundant sentence operator.

Example 2:
λx
�

q(R)(x)∧ g (R)(x)
�

where x is a variable of type e , q and g are predicate functor constants (type
〈〈e , t 〉, 〈e , t 〉〉, and R is a one-place predicate constant (type 〈e , t 〉). Since x is
type e , and q(R)(x)∧ g (R)(x) is type t , the entire λ abstract is type 〈e , t 〉—it’s a
one-place predicate of individuals. But what does it mean?

Since the matrix expression is of type t , we can gloss the λ abstract using “such
that”. It means: “is an entity, x, such that q(R)(x) and g (R)(x)”. Suppose we
think of q as meaning “quickly”, g as meaning “gracefully”, and R as meaning
“runs”. Then q(R) is a one-place predicate meaning “runs quickly”, and g (R) is
a one place predicate meaning “runs gracefully”; and so, the entire λ abstract
means “is an x such that x runs quickly and x runs gracefully”. In other words,
it is a complex one-place predicate meaning “runs quickly and gracefully”.

We can reach the same conclusion by thinking about what the λ abstract does.
If you attach it to a name, c , symbolizing “Ted”, say, you get:

λx
�

q(R)(x)∧ g (R)(x)
�

(c)

58

which reduces by β conversion to:

q(R)(c)∧ g (R)(c)

which means that Ted runs quickly and runs gracefully. That is exactly what
the complex predicate ‘runs quickly and gracefully’ does.

Example 3:
λY λx

�

q(Y)(x)∧ g (Y)(x)
�

This one is a little more complicated. Here the matrix variable Y is of type
〈e , t 〉, and the matrix expression is itself a λ abstract:

λx
�

q(Y)(x)∧ g (Y)(x)
�

This “inner” λ abstract is of type 〈e , t 〉, since its abstraction variable x is type
t and its matrix q(Y)(x) ∧ g (Y)(x) is type t . Thus the type of the “outer”
λ abstract (i.e., the entire original λ abstract λY λx

�

q(Y)(x) ∧ g (Y)(x)
�

) is
〈〈e , t 〉, 〈e , t 〉〉. It’s a predicate functor.

We can’t gloss the outer λ abstract using “such that” since its matrix isn’t of
type t . We’ll need to think instead about what it does. If you attach it to a
one-place predicate, R, you get:

λY λx
�

q(Y)(x)∧ g (Y)(x)
�

(R)

which β-reduces to:
λx
�

q(R)(x)∧ g (R)(x)
�

This is just Example 2. If we think of R as meaning “runs”, then this is a
predicate meaning “runs quickly and gracefully”. So, here is what the outer λ
abstract did: it converted a predicate meaning “runs” into a predicate meaning
“runs quickly and gracefully”. Similarly, if attached to a predicate meaning
“walks” it will result in a predicate meaning “walks quickly and gracefully”. So
what it does in general is convert any predicate G into a predicate meaning
“Gs quickly and gracefully”.

We now have a pretty good handle on what the λ abstract does. In many cases,
that will be the best we can do. However, in this case, we can supply a gloss:
the λ abstract symbolizes this complex adverb: “quickly and gracefully”!

Let’s end by examining how the formal semantics of section 5.2.4 can be applied
to λ abstracts. In any interpretation, the denotation of a λ abstract of a certain

59

type will just be the same sort of animal that is generally denoted by expressions
of that type: a function of the appropriate sort. Which function? The rule is
this:

Semantics for λ abstracts

In any interpretation, the λ abstract

λxa1
1 . . . xan

n E

denotes the n-place function that maps any n denotations, of types
a1, . . . ,an, respectively, to the object that E denotes when the variables
xa1

1 , . . . , xan
n are assigned those denotations

For example, λx(C x ∧ E x) denotes the one-place function that maps any de-
notation of type e—i.e., any member of the domain—to the object that the
formula C x ∧ E x denotes when x is assigned that individual. But formulas
denote truth values, so this amounts to saying that λx(C x ∧ E x) denotes the
function that maps a member of the domain to T if and only if the formula
C x ∧ E x is true of that entity—which is exactly what we said in section 5.3.1.

5.4 Alternate systems

I have been presenting one sort of lambda abstraction and higher-order logic,
but there are others out there which you may encounter.

5.4.1 Binary-only types and schön�nkelization

In the approach to types that I have introduced, complex types look like this:
〈a1, . . . ,an, b 〉. A complex type can have any �nite number of “constituent
types”. But in some other systems, complex types are only allowed to have two
constituent types; they must always look like this: 〈a, b 〉. That is, complex types
must always be binary.

In fact this is not a substantive restriction, since there is a way of simulating
the more complex types using only binary types. Let’s illustrate this with a
two-place predicate, L, for “loves”. In standard predicate logic, you can write
things like Lcd , meaning that c loves d . The two-place predicate L attaches

60

to two names to form a sentence. Thus L is of type 〈e , e , t 〉. How would we
represent L if we were only allowed to use expressions of binary types?

Here is the trick. (It’s called “schön�nkelization” or “schoen�nkelization”, after
Moses Schön�nkel, or “currying”, after Haskell Curry.) We represent L as
being of type 〈e , 〈e , t 〉〉. Thus it combines with a name or individual variable
(type e) to form a predicate (type 〈e , t 〉). L(c) therefore is a predicate, meaning is
loved by c ; and we can then attach this predicate to d to form a sentence, L(c)(d),
meaning that d is such that it is loved by c .28

In a theory allowing only binary types, we would play this same trick with other
“multi-place” expressions, such as two-place sentential connectives like ∧, ∨,
and →. These are usually treated as having the type 〈t , t , t 〉: they attach to
a pair of formulas to make a formula. But in a binary type theory they are
treated as having type 〈t , 〈t , t 〉〉: they attach to an expression of type t to make
an expression of type 〈t , t 〉. That is, they attach to formulas to make one-place
sentence operators, which can in turn attach to formulas to make formulas. So,
for example, instead of writing A∧B (where A and B are formulas), we would
instead write ∧(A)(B).

5.4.2 Relational types

The types we have been discussing are sometimes called “functional” types.
There is an alternative system of types, which are often called “relational” types,
in which the only types in addition to the types of names and formulas are
predicate types, albeit of arbitrarily high level.

To de�ne relational types, you begin with just one primitive type, e . Then, for
any types a1, . . .an, there is another type: (a1, . . . ,an).

29 This further type is to be
understood as the type of expressions that combine with n expressions, of types
a1, . . . ,an, respectively, to make a formula. The fact that the resulting expression
is a formula needn’t be explicitly represented in relational type (a1, . . . ,an)
(in contrast to the functional type 〈a1, . . . ,an, b 〉, which explicitly represents
the type b of the resulting expression), because the resulting expression for

28We made an arbitrary choice here, in deciding that L(c) is to mean is loved by c . We could
have instead decided that it would mean loves c . In that case, L(c)(d) would have meant that d
loves c . See Heim and Kratzer (1998, section 2.4) on “left-” and “right-” schön�nkelizing.

29Relational types are often written with angled rather than rounded brackets: 〈a1, . . . ,an〉.
I’m using a different notation to distinguish them from functional types (which are, by the way,
often written as (a→ b) when they’re binary).

61

relationally typed expressions is always a formula; this is hard-wired into the
idea of relational types.

For relational types (a1, . . . ,an), the case where n = 0 is allowed. That is, there
is a type (). This is the type of expressions that combine with zero expressions
to make formulas. How can an expression combine with no formulas to make a
formula? Easy: by already being a formula. So what I am saying is that () is the
type of expressions that are formulas.

Thus the de�nition of relational types is as follows:

De�nition of relational types

Unde�ned type: e .

(The type of singular terms)

For any types a1, . . .an (where n may be 0), (a1, . . . ,an) is also a type.

(The type of expressions that combine with n expressions, of
types a1, . . . ,an, respectively, to make a formula)

There is an easy to miss, but very important, difference between relational
and functional types. Expressions of functional type 〈a, b 〉 convert an a into a
b , so to speak, whereas expressions of relational type (a, b) convert an a and
a b into a formula. The former are one-place expressions whereas the latter
are two-place; and the latter are always predicates whereas the former are not
unless b happens to be t . For instance, the functional type 〈e , e〉 is the type of
one-place function symbols. Although we haven’t discussed this type explicitly, we
have met one expression of this type: the successor sign ′ from the language
of arithmetic, which combines with a term (such as 0) to form a term (0′). But
the similar-looking relational type (e , e) is the type of two place (�rst-order)
predicates, such as B for “bites”.

Just as we introduced a logical language based on functional types at the end of
section 5.2.2, we can also introduce a logical language based on relational types.
As before, for each relational type there will be variables and perhaps constants;
propositional connectives will be assigned appropriate types (for instance,∼
will have type (()) and ∧ will have type ((), ()); and for any variable v of any

62

type and any expression E of type () (i.e., any formula), ∀vE and ∃vE will be
expressions of type (). But the rule for forming complex expressions will be a
little different. The old rule for functionally typed expressions looked like this:

If E1, . . . , En are expressions of types a1, . . . ,an, and E is an expression of
type 〈a1, . . . ,an, b 〉, then E(E1, . . . , En) is an expression of type b

whereas the new rule for relationally typed expressions looks like this:

If E1, . . . , En are expressions of types a1, . . . ,an, and E is an expression
of type (a1, . . . ,an), then E(E1, . . . , En) is an expression of type ().

This new language is in many ways similar to the language introduced at
the end of section 5.2.2, though not perfectly so. Each language has names,
formulas, sentential connectives, quanti�ers, n-place �rst-order predicates for
each n, n-place second-order predicates for each n, and so on. (Notice that in
most cases, these expressions are assigned different-looking types in the two
systems. For instance, formulas are of functional type t , but relational type ();
one-place predicates are of functional type 〈e , t 〉, but relational type (e); binary
sentential connectives (like ∧) are of functional type 〈t , t , t 〉, but relational type
((), ()).) But the functional language has some additional expressions without
direct counterparts in the relational language. For example, only the functional
language has one-place predicate-functors (i.e., expressions that combine with
one-place predicates to form one-place predicates; i.e., expressions of type
〈〈e , t 〉, 〈e , t 〉〉; i.e., adverbs). The relational language lacks such expressions
because every complex relational type is that of an expression which, when
combined with appropriate other expressions, produces a formula, whereas
predicate-functors combine with predicates to produce predicates.

So there is a sense in which functional types are “syntactically more expressive”
than relational types: on the natural way of associating types with syntactic
categories, relational syntactic categories are a proper subset of functional
syntactic categories. But in a way this is super�cial, since there is a sense in
which relational types are just as semantically expressive as functional types. See
Dorr (2016, Appendix 2) for details, but the basic idea is that we can use a
trick akin to schön�nkelization to simulate the meanings of, e.g., predicate
functors with relationally typed expressions. Given the semantics of section

63

5.2.4, a predicate functor (type 〈〈e , t 〉, 〈e , t 〉〉) expresses a function from predicate
meanings to predicate meanings—i.e., a one-place function from (i) functions-
from-entities-to-truth-values, to (ii) functions-from-entities-to-truth-values.
But the information encoded in any such function could also be encoded in
a function that moves the argument of the function in (ii) into (i)—i.e., by a
two place function from (ia) functions-from-entities-to-truth-values and (ib)
entities, to (ii) truth values. For example, the functionally typed adverb ‘quickly’
expresses the function, q , that maps any function g (from entities to truth
values) to the “g -ing quickly” function—the function that maps any entity x
to T iff x “g s quickly”. We can simulate this function with the closely related
function q ′ that maps any g and any entity x to T if and only if x g s quickly.
And since this is a function to truth values, it is the kind of meaning that can
be expressed by a predicate (if we modify the semantics of section 5.2.4 in
the obvious way for relational types), namely a predicate with two arguments,
the �rst of which is a predicate and the second of which is a name. And such
predicates do exist in the relationally typed language: they have relational type
((e), e).

5.4.3 Quanti�ers as higher-order predicates

In �rst-order logic, quanti�ers do two things: bind variables and express quan-
tity. λ abstracts also bind variables, and in fact can take over variable-binding
from quanti�ers. Here is how.30

Why not think of a quanti�ed natural language sentence like:

Something is sitting and eating

as meaning:
Sitting-and-eating has at least one instance

? Here ‘sitting-and-eating’ is a (complex) predicate, and ‘has at least one
instance’ is a higher-order predicate—a predicate of a predicate. This in turn
suggests a symbolization like this:

has-at-least-one-instance
�

λx(S x ∧ E x)
�

where ‘has-at-least-one-instance’ is a predicate applied to the predicate λx(S x∧
E x) representing ‘sitting-and-eating’. Only, to save writing, let’s write ∃ instead

30See Stalnaker (1977). This is inspired by Frege, e.g. (1892, p. 187).

64

of ‘has-at-least-one-instance’, and drop the outer parentheses:

∃λx(S x ∧ E x)

Compare, now, the standard symbolization:

∃x(S x ∧ E x)

In the standard symbolization, the quanti�er both binds the variable in the
matrix formula S x ∧ E x, and also makes a statement of quantity: that at least
one thing satis�es the matrix. In the new symbolization, λ binds the variable,
and then all the quanti�er ∃ has to do is make the statement of quantity: that
the predicate formed using the λ has at least one instance.

So our new syntax for the quanti�ers is this:

If Π is a one-place predicate then ∀Π and ∃Π are formulas

As we’ve seen, instead of writing ∃x(S x ∧ E x) in the new syntax we now write
∃xλx(S x∧E x). Similarly, instead of writing ∀x(F x→Gx)we write ∀λx(F x→
Gx). Instead of writing ∃xF x, we write ∃xλxF x, or better, just ∃F . And instead
of writing ∃x∀yRxy for “there is someone who respects everyone”, we instead
write:

∃λx∀λyRxy

Let’s think about this last example carefully, working backwards: λyRxy is a
predicate meaning “is a y that x respects”, or more concisely, “is respected by
x” (x is free here), so ∀λyRxy is a sentence meaning “everyone is respected by
x”, that is, “x respects everyone” (x is still free), so λx∀λyRxy is a predicate (in
which x is no longer free) meaning “is an x that respects everyone”, or more
concisely, “respects everyone”; and so, �nally, ∃λx∀λyRxy is a sentence saying
that there is someone who respects everyone.

We can play this trick in higher-order logic too. Instead of symbolizing “Ted
has at least one property” as:

∃X X c

we can instead symbolize it thus:

∃λX X c

65

meaning: “the property of being a property had by Ted has at least one instance—
i.e., is had by at least one property”. And instead of symbolizing “every propo-
sition is either true or false” as:

∀P (P ∨∼P)

we can instead write:
∀λP (P ∨∼P)

meaning: “the property of being a proposition that is either true or false is such
that every proposition has it”.

In general, for any type a, instead of writing:

∃xaA ∀xaA

(where A is a formula) we now write instead:

∃aλxaA ∀aλxaA

(In the previous two examples I left out the superscripts on ∃ or ∀, and we might
continue to do so in informal contexts, but the idea here is that they are of�cially
required.31) ∃a and ∀a are of type 〈〈a, t 〉, t 〉: they attach to predicates of type

31To require the superscripts is to treat quanti�ers of different types as being distinct logical
constants—e.g., ∀t is not the same symbol as ∀e . This isn’t mandatory; one could instead
continue with just two quanti�ers, ∃ and ∀, and write the semantics so that the truth conditions
of sentences with quanti�ers depends on the type of the variable to which the quanti�ers are
attached. But one nice thing about requiring the superscripts is that quanti�ers can then be
treated “categorematically”. A categorematic expression is one that has a meaning in isolation; a
“syncategorematic” expression has no meaning in isolation; rather, larger expressions containing
it have a meaning. (“Having a meaning” needs to be understood narrowly in order for this to
make sense, as signifying that the expression is assigned an entity as a meaning by a certain
semantic theory.) In the standard semantics for �rst-order logic, quanti�ers and sentential
connectives are syncategorematic, since instead of assigning them denotations (in the way that
we assign predicates and names denotations) we state rules that govern sentences containing
them, such as “A∧B is true if and only if A is true and B is true” or “∀vA is true if and only if A is
true of every member of the domain”. But in higher-order logic, sentential connectives can be
treated categorematically. E.g., recall from section 5.2.4 that ∼ (which is of type 〈t , t 〉, denotes
(in any interpretation) the function that maps T to F and F to T . Now, if in higher-order logic
we had just the two untyped quanti�ers, they would still need to be syncategorematic. But with
typed quanti�ers, each one can receive a denotation in isolation, as in the text. Note, however,
that even in higher-order logic we still need a syncategoramic expression: λ.

66

〈a, t 〉 (which is the type of the λ abstracts they’re attached to) to make formulas.
We can gloss ∃a and ∀a as meaning “applies to at least one a-entity” and “applies
to every a-entity”, respectively. Given the formal semantics for higher-order
logic we have been developing, in any interpretation the denotations of these
logical constants would be the following:

∃a denotes the function that maps any 〈a, t 〉 denotation, d , to T if and
only if for some a denotation, d ′, d (d ′) = T

∀a denotes the function that maps any 〈a, t 〉 denotation, d , to T if and
only if for every a denotation, d ′, d (d ′) = T

References
Bacon, Andrew (2022). A Philosophical Introduction to Higher-order Logics. Rout-

ledge. Forthcoming.

Boolos, George (1971). “The Iterative Conception of Set.” Journal of Philosophy
68: 215–31. Reprinted in Boolos 1998: 13–29.

— (1998). Logic, Logic, and Logic. Cambridge, MA: Harvard University Press.

Church, Alonzo (1940). “A Formulation of the Simple Theory of Types.”
Journal of Symbolic Logic 5: 56–68.

Dorr, Cian (2016). “To Be F is to Be G.” Philosophical Perspectives 30(1): 39–134.

Dorr, Cian, John Hawthorne and Juhani Yli-Vakkuri (2021). The Bounds of
Possibility: Puzzles of Modal Variation. Oxford: Oxford University Press.

Enderton, Herbert (1977). Elements of Set Theory. New York: Academic Press.

Fine, Kit (2007). “Relatively Unrestricted Quanti�cation.” In Agustín Rayo
and Gabriel Uzquiano (eds.), Absolute Generality, 20–44. Oxford: Oxford
University Press.

Frege, Gottlob (1892). “On Concept and Object.” In Frege (1997a), 181–93.

— (1952/1892). “On Sense and Reference.” In Peter Geach and Max Black
(eds.), Translations of the Philosophical Writings of Gottlob Frege. Oxford: Black-
well.

67

— (1997a). The Frege Reader. Ed. Michael Beany. Oxford: Blackwell.

— (1997b). “Function and Concept.” In Frege (1997a), 130–48.

Heim, Irene and Angelika Kratzer (1998). Semantics in Generative Grammar.
Malden, MA: Blackwell.

Kaplan, David (1994). “A Problem in Possible Worlds Semantics.” In Walter
Sinnott-Armstrong (ed.), Modality, Morality, and Belief, 41–52. New York:
Cambridge University Press.

MacFarlane, John (2005). “Logical Constants.” Stanford Encyclopedia of
Philosophy. Available at http://plato.stanford.edu/entries/
logical-constants/.

Shapiro, Stewart (1991). Foundations without Foundationalism: A Case for Second-
Order Logic. Oxford: Clarendon Press.

Stalnaker, Robert (1977). “Complex Predicates.” The Monist 60: 327–39.

68

http://plato.stanford.edu/entries/logical-constants/
http://plato.stanford.edu/entries/logical-constants/

	Introduction
	Importance of syntax to logic
	Syntax in formal languages

	First- versus second-order logic
	Syntax
	Formal logic and logical consequence
	Semantics
	Proof theory
	Metalogic
	Completeness
	Compactness
	Clarifying differences in expressive power

	Metamathematics
	Skolem's paradox
	Nonstandard models of arithmetic
	Schematic and nonschematic axiomatizations

	Paradoxes
	Abstract mathematics and set-theoretic foundations
	Russell's paradox
	Axiomatic set theory and ZF
	Other paradoxes, other solutions

	normalnormalHigher-order logic and -abstraction
	Third-order logic and beyond
	Higher-order logic and types
	More about syntax
	Types
	Meaning: Frege and functions
	Formal semantics for higher-order logic
	Variables
	Typing symbols

	normalnormal-abstraction
	Complex predicates
	Generalizing normalnormal: syntax
	Generalizing normalnormal: semantics

	Alternate systems
	Binary-only types and schönfinkelization
	Relational types
	Quantifiers as higher-order predicates

