DEFINITION OF MODEL: An SC-model, \mathcal{M} , is an ordered triple $\langle \mathcal{W}, \preceq, \mathcal{I} \rangle$, where:

- $\cdot \mathcal{W}$ is a nonempty set
- \mathscr{I} is a two-place function that assigns either 0 or 1 to each sentence letter relative to each $w \in \mathscr{W}$ ("interpretation function")

("worlds")

- $\cdot \preceq$ is a three-place relation over \mathscr{W} ("nearness relation")
- The valuation function $V_{\mathcal{M}}$ for \mathcal{M} (see below) and \preceq satisfy the following conditions:
 - $\cdot \ \text{ for any } w \in \mathcal{W} \colon \preceq_w \text{ is strongly connected in } \mathcal{W}$
 - · for any $w \in \mathcal{W}: \underline{\prec}_w$ is transitive
 - for any $w \in \mathcal{W}: \preceq_w$ is anti-symmetric
 - for any $x, y \in \mathcal{W}: x \preceq_x y$ ("base")
 - for any SC-wff, ϕ , provided $V_{\mathscr{M}}(\phi, v) = 1$ for at least one $v \in \mathscr{W}$, then for every $z \in \mathscr{W}$, there's some $w \in \mathscr{W}$ such that $V_{\mathscr{M}}(\phi, w) = 1$, and such that for any $x \in \mathscr{W}$, if $V_{\mathscr{M}}(\phi, x) = 1$ then $w \preceq_z x$ ("limit")

(For any o, \leq_o is the binary relation resulting from fixing o as \leq 's third argument. A binary relation R is strongly connected in set A iff for each $u, v \in A$, either Ruv or Rvu, and anti-symmetric iff u = v whenever both Ruv and Rvu.)

DEFINITION OF VALUATION: Where $\mathscr{M} (= \langle \mathscr{W}, \preceq, \mathscr{I} \rangle)$ is any SC-model, the SC-valuation for $\mathscr{M}, V_{\mathscr{M}}$ is defined as the two-place function that assigns either 0 or 1 to each SC-wff relative to each member of \mathscr{W} , subject to the following constraints, where α is any sentence letter, ϕ and ψ are any wffs, and w is any member of \mathscr{W} :

$$\begin{split} & \mathcal{V}_{\mathcal{M}}(\alpha,w) = \mathscr{I}(\alpha,w) \\ & \mathcal{V}_{\mathcal{M}}(\sim\phi,w) = 1 \text{ iff } \mathcal{V}_{\mathcal{M}}(\phi,w) = 0 \\ & \mathcal{V}_{\mathcal{M}}(\phi \rightarrow \psi,w) = 1 \text{ iff either } \mathcal{V}_{\mathcal{M}}(\phi,w) = 0 \text{ or } \mathcal{V}_{\mathcal{M}}(\psi,w) = 1 \\ & \mathcal{V}_{\mathcal{M}}(\Box\phi,w) = 1 \text{ iff for any } v \in \mathscr{W}, \mathcal{V}_{\mathcal{M}}(\phi,v) = 1 \\ & \mathcal{V}_{\mathcal{M}}(\phi\Box\rightarrow\psi,w) = 1 \text{ iff for any } x \in \mathscr{W}, \text{ IF } [\mathcal{V}_{\mathcal{M}}(\phi,x) = 1 \text{ and for any } y \in \mathscr{W} \text{ such} \\ & \text{ that } \mathcal{V}_{\mathcal{M}}(\phi,y) = 1, x \preceq_{w} y] \text{ THEN: } \mathcal{V}_{\mathcal{M}}(\psi,x) = 1 \end{split}$$

LEWIS'S SEMANTICS: Like Stalnaker's semantics except:

- · antisymmetry and limit are not assumed
- the base condition is now: for any x, y, if $y \preceq_x x$, then x = y
- the truth condition for the $\Box \rightarrow$ is now: $LV_{\mathcal{M}}(\phi \Box \rightarrow \psi, w) = 1$ iff EITHER ϕ is true in no worlds, OR: there is some world, *x*, such that $LV_{\mathcal{M}}(\phi, x) = 1$ and for all *y*, if $y \preceq_w x$, then $LV_{\mathcal{M}}(\phi \rightarrow \psi, y) = 1$