Theorem 1 If Γ is any set of modal wffs and \mathcal{M} is an MPL-model in which each wff in Γ is valid, then every theorem of $K + \Gamma$ is valid in \mathcal{M} .

Lemma 2 All instances of the PL- and K-axiom schemas are valid in all MPL-models *Lemma* 3 For every MPL-model, *M*, MP and NEC preserve validity in *M*

Crucial feature canonical models will be shown to have:

If a formula is valid in the canonical model for S, then it is a theorem of S

New definition of S-provability-from: A wff ϕ is provable in system S from a set Γ (" $\Gamma \vdash_{S} \phi$ ") iff for some $\gamma_{1} \dots \gamma_{n} \in \Gamma$, $\vdash_{S} (\gamma_{1} \wedge \dots \wedge \gamma_{n}) \rightarrow \phi$ (or else $\Gamma = \emptyset$ and $\vdash_{S} \phi$)

Definition of S-consistency: A set of wffs Γ is S-inconsistent iff $\Gamma \vdash_S \bot$. Γ is S-consistent iff it is not S-inconsistent.

DEFINITION OF CANONICAL MODEL: The canonical model for system S is the MPL-model $\langle \mathcal{W}, \mathcal{R}, \mathcal{I} \rangle$ where:

- $\cdot \ {\mathscr W}$ is the set of all maximal S-consistent sets of wffs
- $\cdot \mathscr{R} w w' \text{ iff } \Box^{-}(w) \subseteq w'$
- $\mathscr{I}(\alpha, w) = 1$ iff $\alpha \in w$, for each sentence letter α and each $w \in \mathscr{W}$
- $\cdot \Box^{-}(\Delta)$ is defined as the set of wffs ϕ such that $\Box \phi$ is a member of Δ

Theorem 4 If Δ is an S-consistent set of MPL-wffs, then there exists some maximal S-consistent set of MPL-wffs, Γ , such that $\Delta \subseteq \Gamma$.

Lemma 5 Where Γ is any maximal S-consistent set of MPL-wffs:

- 5a for any MPL-wff ϕ , exactly one of ϕ , $\sim \phi$ is a member of Γ
- 5b $\phi \rightarrow \psi \in \Gamma$ iff either $\phi \notin \Gamma$ or $\psi \in \Gamma$
- If $\Gamma \vdash_{\mathrm{PL}} \phi$, then $\gamma_1 \dots \gamma_n \vdash_{\mathrm{PL}} \phi$, for some $\gamma_1 \dots \gamma_n \in \Gamma$ (or else $\vdash_{\mathrm{PL}} \phi$) (lemma ??)
- · "Excluded middle MP": $\phi \rightarrow \psi, \sim \phi \rightarrow \psi \vdash_{\text{PL}} \psi$
- · "Ex falso quodlibet": $\phi, \sim \phi \vdash_{\text{PL}} \psi$
- · Modus ponens: $\phi, \phi \rightarrow \psi \vdash_{PL} \psi$
- "Negated conditional": $\sim (\phi \rightarrow \psi) \vdash_{\text{PL}} \phi$ and $\sim (\phi \rightarrow \psi) \vdash_{\text{PL}} \sim \psi$
- If $\phi \in \Gamma$, then $\Gamma \vdash_{\mathrm{PL}} \phi$

- \cdot Cut for PL
- \cdot The deduction theorem for PL

Deduction theorem for MPL: For each of our modal systems S (and given our new definition of provability from a set), if $\Gamma \cup \{\phi\} \vdash_S \psi$, then $\Gamma \vdash_S \phi \rightarrow \psi$.

- 5c if $\vdash_{S} \phi$, then $\phi \in \Gamma$
- 5d if $\vdash_{S} \phi \rightarrow \psi$ and $\phi \in \Gamma$, then $\psi \in \Gamma$

Proof. For 5c, if $\vdash_S \phi$, then $\vdash_S (\sim \phi \rightarrow \perp)$, since S includes PL. Since Γ is S-consistent, $\sim \phi \notin \Gamma$; and so, since Γ is maximal, $\phi \in \Gamma$. For 5d, use lemmas 5c and 5b.

Lemma 6 If Δ is a maximal S-consistent set of wffs containing $\sim \Box \phi$, then there exists a maximal S-consistent set of wffs Γ such that $\Box^{-}(\Delta) \subseteq \Gamma$ and $\sim \phi \in \Gamma$

Theorem 7 Where $\mathcal{M} (= \langle \mathcal{W}, \mathcal{R}, \mathcal{I} \rangle)$ is the canonical model for any normal modal system, S, for any wff ϕ and any $w \in \mathcal{W}, V_{\mathcal{M}}(\phi, w) = 1$ iff $\phi \in w$.

Corollary 8 ϕ is valid in the canonical model for S iff $\vdash_{S} \phi$.