
Finitism and Incompleteness Ted Sider
Philosophy of Mathematics

1. Hilbert’s program

1.1 The need for consistency proofs

In standard logic, any contradiction P ∧∼P implies every statement Q:

1. P ∧∼P (suppose)
2. P (from 1)
3. P ∨Q (from 2)
4. ∼P (from 1)
5. Q (from 3, 4)

So a deductivist wants consistent axiom systems—systems from which no
contradiction can be proven. Hilbert eventually wanted proofs that axiom
systems are consistent.

Consistency proofs would answer concerns that analysis and set theory, which
traf�c in in�nity, are inconsistent.

The idea behind the programme is to carefully and rigorously formalize
each branch of mathematics, together with its logic, and then to study
the formal systems to make sure they are coherent” (Shapiro, p. 159).

1.2 Consistency proofs using models

Poincaré’s disk model shows a certain nonEuclidean set of axioms to be consis-
tent. (If they proved a contradiction, then since proofs depend only on logical
form, a contradiction would need to be true when ‘point’, ‘line’, and ‘distance’
mean what they do in the model.)

But this kind of proof assumes the consistency of the theory used to talk about
the elements in the model—in this case, analysis—so it can’t be used if that
theory’s consistency is at issue.
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1.3 Finitism

To show that a modern, formalized mathematical theory is consistent, we need
only show that no proof contains a contradiction—a line of the form “P ∧∼P”.
And proofs are �nite objects, so Hilbert thought that an especially secure sort
of mathematical reasoning, called �nitary reasoning, could establish this.

Finitary reasoning deals with �nite objects, whose properties our minds are
capable of directly apprehending.

Examples:

Finitary: reasoning about particular natural numbers (which he regarded as
terms: 1 is the stroke, “|”, 2 is “||”, 3 is “|||”, etc.)

Finitary: “for all m and n, m+ n = n+m”

Not Finitary: “There exist natural numbers a, b , c , and a natural number n
that is greater than 2, such that an + b n = c n.”

Finitary: “There exist natural numbers a, b , c , all less than 5,000,000 and a
natural number n that is greater than 2 but less than 5,000,000, such that
an + b n = c n.”

Finitary: reasoning about particular proofs, such as “this particular sequence
of formulas is a legal proof”

Not �nitary: “there exists a proof of Fermat’s last theorem”

Finitary: “there exists some proof with less then one million characters of
Fermat’s last theorem”.
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1.4 An example consistency proof

Let’s prove that no contradiction can be proven in the following system of
propositional logic. It has these axioms:

A→ (B→A) (PL1)
(A→(B→C ))→ ((A→B)→(A→C )) (PL2)
(∼B→∼A)→ ((∼B→A)→B) (PL3)

and one rule of inference, modus ponens:
A
A→ B
B

Step 1: de�ne a contradiction as a sentence of the form ∼(A→A).

Step 2: de�ne a truth-value-assignment as a way of associating exactly one of the
numbers 1 and 0 to each sentence letter in a given proof.

Step 3: give these rules for determining the truth values of complex formulas:

• ∼A is 1 if A is 0, and 0 if A is 1

• A→ B is 1 if A is 0 or B is 1, and 0 if A is 1 and B is 0

Step 4: show that all axioms are 1 in every truth-value assignment. E.g.:

1. Suppose for reductio that some formula of the form A→ (B → A) is 0
under some truth value assignment.

2. Then A is 1 in that assignment and B→A is 0

3. But if B→A is 0, A must be 0, which contradicts the fact that it is 1

Step 5: show that if the premises of modus ponens are both 1, then so is its
conclusion:

1. Suppose A→ B is 1. Then either A is 0 or B is 1.

2. Suppose also that A is 1 as well. Thus A is not 0. But then given the
previous step, B is 1.

Step 6: conclude from steps 4 and 5 that every line in every proof is 1 in any
truth-value assignment

Step 7: conclude from step 6 that ∼(A→A) can never be 1. (Otherwise A→A
would be 0, and so A would be 1 and 0.) So it can never occur in any proof.
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2. Incompleteness

First incompleteness theorem Any “minimally strong” axiomatic system is
incomplete: for some sentence, neither it nor its negation can be proven

Second incompleteness theorem No “slightly more than minimally strong”
axiomatic system can prove its own consistency

2.1 Gödel numbering

Gödel numbering/coding: assigning a unique number to each string of symbols
in a certain language.

Language of arithmetic: the language with the symbols 0, ′ (for successor),+,
and ×. Some formulas:

∀n 0 6= n′

0+ 0′′ = 0′′′× 0′′′′′

∀x∀y x + y = y + x

Each of these formulas would have some code. E.g., maybe 5, 47, and 7,000,000.

Also sequences of strings of symbols get codes. E.g., maybe the �rst of these has
the code 67 and the second has the code 4,865,215:

1. 0+ 0′′ = 0′′′× 0′′′′′

2. 0+ 0= 0
3. ∀x∃y x = y

1. ∀n 0 6= n′

2. 0 6= 0′′′

2.2 Representing metalogic in arithmetic

Given any coding, any property of strings has a corresponding property of
numbers. E.g., maybe the strings with the property being a formulas containing
at least one quanti�er just happen to be all and only the strings whose code is an
even number. Then evenness is the corresponding arithmetic property.

Similarly, the property of being a sequence of formulas that counts as a legal proof
from the Peano axioms has a mathematical counterpart: the property of numbers
that are the codes of sequences of formulas that are legal proofs from the Peano
axioms.
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2.3 Formalizing metalogic in the language of arithmetic

For any property of strings and its arithmetic counterpart, we might produce a
formula in the language of arithmetic that “formalizes” the arithmetic coun-
terpart. E.g., if evenness is the arithmetic counterpart of being a formula with
at least one quanti�er; then the corresponding formula in the language of
arithmetic would be:

∃y x = y × y

This lets the language of arithmetic “talk about itself”! For this sentence:

∃x∃y x = y × y

in a sense “says” that some formula in the language of arithmetic contains a
quanti�er.

Another example. Let T be some axiomatic system for arithmetic. Suppose
some formula T-Proof(x) formalizes the arithmetic property of being a number
that is the code of a sequence of formulas that counts as a legal proof in T ; and sup-
pose that some formula Contains-contradiction(x) formalizes the arithmetic
property of being the code of a sequence of formulas that contains some contradiction.
Then this sentence “says” that T is consistent:

∼∃x(T-Proof(x)∧Contains-contradiction(x))

2.4 First incompleteness theorem

Let T be some “minimally strong” formal system, in that:

• The language of T includes the language of arithmetic

• The axioms of T are “effectively decidable”

• A certain minimal amount of arithmetic can be proven from the axioms
of T .

For any formula, A, let ðAñ be the term that consists of “0” followed by n
successor signs:

0

n of these
︷︸︸︷

′′ . . .′

Gödel came up with a formula Provable(x) which “says in T ” that x is provable
in T , meaning that:
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(P) if A is provable in T then Provable(ðAñ) is provable in T

Then Gödel showed how to construct a sentence, G, that “says” of itself that it
is not provable, in that this is provable in T :

G↔∼Provable(ðGñ) (*)

Part of the proof that if T is consistent, neither G nor its negation is provable
in T :

Suppose that T is consistent and that G is provable. Then by (P), Provable(ðGñ)
is provable. But also, since (*) is provable,∼Provable(ðGñ) is also prov-
able, which contradicts the fact that T is consistent. Therefore G is not
provable.

2.5 Second incompleteness theorem

In the previous section we showed this conditional statement to be true:

If T is consistent then G is not provable

Gödel showed that if T is slightly more than minimally strong, in that certain
proofs by induction can be given in T , then the argument of the previous
section can be formalized in T , in that the following sentence is provable in T :

CON→∼Provable(ðGñ) (**)

where CON is the sentence ∼∃x(Proof(x) ∧Contains-contradiction(x))—a
sentence that formalizes in T the claim that T is consistent. We can now argue
as follows:

i) Suppose for reductio that CON is provable.

ii) Then since (**) is provable, so is ∼Provable(ðGñ)

iii) Then, since (*) is provable, so is G

iv) But we earlier showed that G is not provable. Therefore, CON is not
provable. That is, T cannot “prove its own consistency”

This is fatal to Hilbert’s program. His �nitary methods of proof can all be
formalized in a “slightly more than minimally strong” theory, T . So if his
methods succeeded in proving the consistency of T , one could prove the
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consistency of T within T . Since that’s impossible, it follows that Hilbert’s
methods cannot prove the consistency of T . And so they certainly can’t prove
the consistency of arithmetic (since a proof of the consistency of arithmetic
would ipso facto be a proof of T , which is a part of arithmetic), let alone stronger
theories like analysis and set theory.
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