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First incompleteness theorem Any “minimally strong” consistent axiomatic
system is incomplete: for some sentence, neither it nor its negation can
be proven

Second incompleteness theorem No “slightly more than minimally strong”
consistent axiomatic system can prove its own consistency

1. Gödel numbering

Idea: assign to each formula a unique natural number (its “code”)

Lookup table for primitive symbols in the language of arithmetic:

0 1 ( 6 ∼ 8 ∀ 12
′ 2 ) 7 → 9 ∃ 13
+ 3 & 10 x 14
× 4 ∨ 11 y 15
= 5 z 16

...
...

Codes for strings: for a string of n symbols, raise the �rst n prime numbers to
powers from the table for symbols in the string, and then multiply the results:

code = 2

table # for �rst symbol

· 3

table # for second symbol

· 5

table # for third symbol

· . . . · p
table # for last symbol

n

Example: the code of ‘∀x x × 0′ = x’ is:

212 · 314 · 514 · 74 · 111 · 132 · 175 · 1914
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Codes for �nite sequences of strings: same, but skip the �rst prime number (to
signal a sequence), and skip prime numbers to signal breaks between strings in
the sequence

Example: the code of ‘0= 0’, ‘∀x x × 0′ = x’ is:

0=0
︷ ︸︸ ︷

31 · 55 · 71 ·

∀x x×0′=x
︷ ︸︸ ︷

1312 · 1714 · 1914 · 234 · 291 · 312 · 375 · 4114

2. Arithmetic counterparts of properties

To any property, p, of strings or sequences of strings, there is a corresponding
property of natural numbers.

Example: Property of strings:

being a string composed of exactly four symbols

Corresponding property of natural numbers:

being divisible by 2, 3, 5, and 7, but not by any other prime numbers

The numerical property is possessed by a number if and only if it’s the code of
a string that has the string property.

Example:. Property of sequences:

being a sequence of two strings, each of which is composed of two symbols

Corresponding numerical property:

being divisible by 3, 5, 11, and 13, but not by any other prime numbers.

More interesting properties of strings and sequences, such as the property
of Being a sequence that is a proof from certain axioms, also have corresponding
numerical properties.

3. Formalizing in the language of arithmetic

The language of arithmetic can express numerical counterparts of string- and
sequence-properties.

Example: The string property:
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being a string that contains exactly one symbol.

Corresponds to the numerical property

being divisible by 2 but not by any other prime number

which is expressed by the formula:

∼x = 0 &∼x = 0′ & ∀y(∃z x = y × z→∃z y = 0′′× z)

Thus in addition to its usual meaning (namely, “the number x is neither 0 nor
1, and any number that x is divisible by is itself divisible by 2”), the formula
can also be understood as talking about strings, and saying: “x is a string that
contains exactly one symbol”. The formula formalizes this property of strings.

Similarly, this formula:

∃x
�

∼x = 0 &∼x = 0′ & ∀y(∃z x = y × z→∃z y = 0′′× z)
�

formalizes the claim that there exists at least one string containing just one symbol.
For the numerical statement it makes is true if and only if at least one string in
the language of arithmetic contains just one symbol.

Suppose that, for a certain set T of axioms in the language of arithmetic, we
could construct formulas “T -Proof(x)” and “Contains-contradiction(x)” that
formalize the sequence-properties of being a proof from T and containing some
formula that is a contradiction. Then the following formula would formalize the
claim that T is consistent:

∼∃x
�

T -Proof(x)& Contains-contradiction(x)
�

4. First incompleteness theorem

“Minimally strong” means:

The language of T includes, at least, the language of arithmetic.

There is an algorithm for telling what formulas count as axioms of T

A certain minimal amount of arithmetic can be proven from the axioms
of T .
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Let A be any formula, with code n. Let “ðAñ” stand for the numeral for the
number n, i.e.:

0

n of these
︷︸︸︷

′′ . . .′

Gödel came up with a formula T -Prov(x) which “says in T ” that x is provable
in T , meaning:

If a formula A is provable in T then the formula T -Prov(ðAñ)
is provable in T (P)

(“T -Prov(ðAñ)” is the result of beginning with the formula T -Prov(x), and
changing all of the ‘x’s to ðAñs.)

He also showed how to construct a sentence, G, that “says” (in T ) of itself that
it is not provable, in that this sentence is a theorem of T :

G↔∼T -Prov(ðGñ) (*)

He then proved the �rst incompleteness theorem, by establishing these claims:

If T is consistent then G is not provable in T (1)
If T is consistent then ∼G is not provable in T (2)

Proof of (1):

Suppose that T is consistent, and suppose for reductio that G is provable
in T . Then by (P), the formula T -Prov(ðGñ) (that is, the formula in the
language of arithmetic that “says” that G is provable in T ) is itself provable
in T . But also, since (*) is provable in T , the formula ∼T -Prov(ðGñ) is
also provable in T , which contradicts the fact that T is consistent. Thus
G is not provable in T .

Thus no matter how many axioms we choose, if they are consistent and mini-
mally strong, there will always be some statements whose truth isn’t settled by
those axioms.

5. Second incompleteness theorem

To prove the second incompleteness theorem, Gödel showed how to formalize
in T his argument for the �rst incompleteness theorem:
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He found a formula “T -CON”, which formalizes the claim that the T axioms
are consistent. He then constructed this formula:

T -CON→∼T -Prov(ðGñ) (**)

This is a formalization of claim (1). He then showed how to turn the argument
for (1) into a proof of (**) in T . Thus sentence (**) is provable in T .

He then argued as follows for the conclusion that if T is consistent, then
T -CON isn’t provable in T :

Suppose T is consistent, and suppose for reductio that T -CON is prov-
able in T . Then since (**) is provable in T , the formula ‘∼T -Prov(ðGñ)’
is also provable in T . And then, since (*) is provable in T , G would also
be provable in T . But we showed earlier that G is not provable in T if T
is consistent (this was claim (1)); contradiction. Therefore, T -CON is
not provable in T .

This was fatal to Hilbert’s program. Hilbert’s �nitary methods of proof can all
carried out in a theory T that is only slightly more than minimally strong. So
if his methods could be used to prove the consistency of T , they could be used
to prove the consistency of T within T . Since that’s impossible (assuming that
T is consistent), it follows that Hilbert’s methods cannot be used to prove the
consistency of T . But if that’s true, then they certainly can’t be used to prove the
consistency of arithmetic (since a proof of the consistency of arithmetic would
ipso facto be a proof of T , which is a part of arithmetic), let alone stronger
theories like calculus and set theory.

6. Gödel and deductivism
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