
ZF Set Theory Ted Sider
Philosophy of Mathematics

Mathematicians didn’t give up on in�nity. They developed ZF set theory, an
(apparently) consistent theory of sets that can provide a foundation for all of
mathematics.

Set-theoretic platonism

Mathematics is about the realm of sets, which exist independently of
us. All branches of mathematics reduce to set theory; all mathematical
entities are sets.

1. The ZF Solution to Russell’s Paradox

Russell’s set R doesn’t exist.

Thus the cavalier attitude toward sets needs to go; we must reject:

Naïve Comprehension

For any “condition”, there exists a corresponding set: the set of all
and only those things that satisfy the condition.

2. The ZF axioms

But we still need something like Naïve Comprehension, so we know that we can
de�ne the sets we need in mathematics. The ZF strategy for doing so: �rst
formulate “expansion” axioms, saying that certain sets exist:
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“Expansion” axioms

Null set: There exists a set ∅ containing no members

Pairing: For any sets a and b , there exists a set containing just a and
b (i.e.: {a, b})

Unions: For any sets A and B , there exists a set, A∪B , containing all
the members of A and also all the members of B

In�nity: There exists a set, A, that contains the null set, and is such
that for any a that is a member of A, the set a ∪ {a} is also a
member of A. (Any such set A must be in�nite, since it contains
all of these sets: ∅,{∅},{{∅},∅}, . . . .)

Power set: For any set, A, the power set of A (i.e., the set of A’s subsets)
also exists

Second, formulate a “contraction” axiom, which lets us use arbitrary conditions
to pick out subsets of given sets:

Axiom of separation

Suppose some set A exists, and let C be any condition (i.e., any formula
in the language of set theory). Then there exists a set B consisting of
all and only the members of A that satisfy condition C .

C

A

B
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For any set A, Separation says that there exists a set B of all non-self-membered-
sets that are in A (we can let C be “is not a member of itself”). Now, the
assumption that Russell’s set R isn’t a member of R led to contradiction:

i) Suppose that R is not a member of R. So it doesn’t contain itself.

ii) But R contains every set that doesn’t contain itself.

iii) So R must be a member of R after all.

But the assumption that B isn’t a member of B doesn’t lead to a contradiction:

i) Suppose that B is not a member of B . So it isn’t a member of itself.

ii) But B contains every set that doesn’t contain itself and which is a member of A.

iii) ??

3. Reducing mathematical entities to sets

“Branch B of mathematics can be reduced to ZF” means: when you de�ne
the primitive expressions of B in set-theoretic terms, the axioms of B become
theorems of ZF.

ZF can reduce all branches of mathematics because the expansion axioms
provide enough “raw materials” that may be “cut to size” using the axiom of
Separation, to provide entities with any structural features we like.

3.1 Ordered pairs

Challenge to this idea: this ZF axiom implies that sets are unordered:

Axiom of Extensionality

If sets A and B have exactly the same members, then A= B

For instance, {a, b}= {b ,a}. But we can construct entities for which order is
signi�cant:
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De�nition of ordered pairs

The ordered pair 〈a, b 〉 is de�ned as the set {{a},{a, b}}.

This de�nition implies that 〈a, b 〉 6= 〈b ,a〉, and in general that:

Ordered pairs 〈a, b 〉 and 〈c , d 〉 are identical if and only if a = c and b = d .

3.2 Functions

De�nition of functions

A function is a set of ordered pairs such that whenever 〈a, b 〉 and 〈a, c〉
are in the set, b = c

If f is a function, “ f (a)” can be de�ned as the unique b such that 〈a, b 〉 is a
member of f (if no such b , f (a) is unde�ned).

3.3 Natural numbers

De�nition of natural numbers

0 is de�ned as ∅ (the empty set)
For any m, the successor of m is de�ned as the set m ∪{m}

Thus 0=∅, 1= {∅}, 2= {∅,{∅}}, etc.

3.4 Reduction of rational numbers

Can we de�ne m
n as the ordered pair 〈m, n〉? Not quite, because, e.g., 1

2 =
2
4 .

Instead, we de�ne rational numbers as “equivalence classes” of ordered pairs.
For example:

1
2
=
n

〈1,2〉, 〈2,4〉, 〈3,6〉, . . .
o
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3.5 Real numbers

A real number can be de�ned, roughly, as the set of all rational numbers that
are less than that real number. Non-circular version of this idea:

De�nition of real numbers

A real number is de�ned as any set, A, of rational numbers that:

1. is nonempty and is not the set of all rational numbers

2. is downward-closed (i.e., if some rational number is a member
of A, then every smaller rational number is also a member of A)

3. has no largest member (i.e., for any member of A there is a larger
member of A)

3.6 Groups

Arbitrary “algebraic structures” can be de�ned as a set (containing the “numbers”
in question), and one or more functions (“operations”) giving their structure.
Example:

Set-theoretic de�nition of a group

A group is an ordered pair 〈A,∗〉 such that:

1. A is a nonempty set

2. ∗ is a function that maps any ordered pair of members of A to
another member of A. (We’ll abbreviate “∗(〈x, y〉)” as “x ∗ y”.)

3. (x ∗ y) ∗ z = x ∗ (y ∗ z), for any x, y, z ∈A (Associativity)

4. There exists an e ∈A such that for any x ∈A, x ∗ e = e ∗ x = x
(Identity element)

5. For any x ∈A there exists some y ∈A such that x ∗ y = y ∗ x = e
(Inverses)
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3.7 Geometry

Example of set-theoretic de�nitions in geometry:

Set-theoretic de�nition of a metric space

A metric space is an ordered pair 〈S, d 〉 where:

1. S is a set

2. d is a two-place function mapping any pair of members of S to
a real number

3. d (x, x) = 0, for any x ∈ S

4. d (x, y)> 0 if x 6= y, for any x, y ∈ S

5. d (x, y) = d (y, x), for any x, y ∈ S

6. d (x, y)+ d (y, z)≥ d (x, z), for any x, y, z ∈ S

Like all set-theoretic reductions of mathematical objects, this relies on the
modern, abstract approach to mathematics. It doesn’t matter whether the
members of S are “really” points, or that d “really” assigns distances. All that
matters is the structure.
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