
Gödel’s incompleteness theorems

Ted Sider February 3, 2021

In 1931 Kurt Gödel proved a pair of remarkable and creative theorems in
metamathematics that doomed Hilbert’s program. Gödel proved two things:

First incompleteness theorem Any “minimally strong” axiomatic system is
incomplete: for some sentence, neither it nor its negation can be proven

Second incompleteness theorem No “slightly more than minimally strong”
axiomatic system can prove its own consistency

We’ll need to explain what these mean; but here, in a preliminary way, is why
they were so damaging to Hilbert’s program and formalism.

The �rst theorem implies that there are serious limits to what the formalist
is trying to do, namely, write down axioms for a given domain from which
everything will follow.

Maybe formalists could live with this. But not the second. For, although this
isn’t obvious, it implies that it’s just not possible to construct �nitary proofs
even for Arithmetic, let alone analysis or set theory.

Gödel’s reasoning is very complicated, and we can’t go through it in complete
detail here. However, if we skip a few of the nuts-and-bolts details, the core
ideas are astonishingly creative and interesting, and relatively easy to explain.

1. Gödel numbering

The �rst main idea is that of Gödel numbering, or coding: that linguistic
objects in formal languages can be associated with natural numbers. (We
already encountered something like this, where we showed that there is a way
of associating a natural number with each �nite string in a �nite vocabulary.)
The number associated with a formula can be thought of as a “code” of the
formula. For instance, consider the language of arithmetic, in which we have
a symbol ′ for successor, a symbol for 0, a symbol for +, and a symbol for ×.

1

Here are some formulas:

∀n 0 6= n′

0+ 0′′ = 0′′′× 0′′′′′

∀x∀y x + y = y + x

Each of these formulas would have a code. Maybe the code of the �rst is 5, the
code of the second is 47, and the code of the third is 7,000,000.

Gödel also showed how to assign codes to sequences of formulas. This isn’t very
different from assigning codes to formulas, since a sequence of formulas, like an
individual formula, is just a �nite string of formulas, which are themselves �nite
strings of expressions in the alphabet. For example, here are two sequences of
formulas:

1. 0+ 0′′ = 0′′′× 0′′′′′

2. 0+ 0= 0
3. ∀x∃y x = y

1. ∀n 0 6= n′

2. 0 6= 0′′′

Maybe the �rst sequence has a code of 67 and the second has a code of 4,865,215.

2. Representing metalogic in arithmetic

Once we have codes for formulas, we can take a further step: coming up with
arithmetic counterparts to statements about logic.

For example, consider this property: containing at least one quanti�er. Some
formulas have the property, such as ∀x∀y x + y = 0. Others don’t, such as
0′+ 0′′ = 0′′′. Given a method of coding, there is a corresponding property of
natural numbers: the natural numbers that are codes of the formulas with the
property. For example, maybe the codes of formulas with at least one quanti�er
turn out to be exactly the even numbers. Then evenness is the counterpart of
having at least one quanti�er.

For another example, consider the property of being a sequence of formulas that
counts as a legal proof in T , for some axiomatic system of arithmetic T . This
property also has a mathematical counterpart: the property of numbers that
are the codes of sequences of formulas that are legal proofs in T . Thus, return
to the second of the example sequences above:

2

1. ∀n 0 6= n′

2. 0 6= 0′′′

Maybe this is such a proof, if the �rst sentence is one of T ’s axioms, since
the second sentence follows from the �rst by the logical rule of universal
instantiation. So if the code of this sequence is 4,865,215, that number has the
arithmetical counterpart of the property of being a legal proof in T .

3. Formalizing metalogic in the language of arithmetic

Now we can take an even further step. Suppose we have some metalogical
property, and its arithmetic counterpart. It may be that we can come up with a
formula in the language of arithmetic that expresses the arithmetic counterpart.
For example, suppose that evenness is the arithmetic counterpart of being a
formula with at least one quanti�er; then the corresponding formula in the
language of arithmetic would be:

∃y x = y + y

This formula gives us a way to use the language of arithmetic to “talk about
itself”! For consider this sentence:

∃x∃y x = y + y

This of course can be seen as a hum-drum statement about numbers: that
there exists at least one even number. But via the coding, it also can be seen
as saying something about the language of arithmetic: that there is at least
one formula containing a quanti�er. That is, this sentence “formalizes in the
language of arithmetic” the metalogical claim that there is at least one formula
in the language of arithmetic containing a quanti�er.

For a more interesting example, return to the arithmetic property of the num-
bers that are codes of sequences of formulas that count as legal proofs in T .
There is also an arithmetic property of numbers that are codes of sequences of
formulas that contain some contradiction. Suppose these arithmetic properties
are formalized, respectively, by two formulas in the language of arithmetic:
T-Proof(x) and Contains-contradiction(x). (This will probably be extremely

3

long formulas!) Then consider this sentence:

∼∃x(T-Proof(x)∧Contains-contradiction(x))

In addition to being some straightforward claim about numbers, this sentence
is, given the coding, also a way of making a metalogical statement: namely, the
statement that there does not exist any sequence that is both a legal proof in T
and also contains a contradiction. That is, this sentence is the formalization of
the claim “T is consistent”!

4. First incompleteness theorem

Let T be some “minimally strong” formal system. Here’s what that means:

• The language of T includes, at least, the language of arithmetic

• The axioms of T are “effectively decidable”—that is, there is a mechanical
procedure for telling what is an axiom. (For example, you can’t say: the
axioms of T are de�ned as all the true sentences of arithmetic.)

• A certain minimal amount of arithmetic can be proven from the axioms
of T . (This includes certain general laws, such as ∀x x + 0= x, but the
theory need not contain a schema of induction.)

Gödel then shows how to formalize in the theory T the metalogical property of
being provable-in-T . Here’s what that means.

Let A be any formula. This formula has a code, n. Now consider this term in
the language of T :

0

n of these
︷︸︸︷

′′ . . .′

That is: “0” followed by a bunch of ′ signs—namely, n of them. This term
is, so to speak, a name of the formula A in the language of arithmetic. Let’s
abbreviate this term by writing: “ðAñ”.

What Gödel did, then, is come up with a formula Provable(x) which “says in
T ” that x is provable in the sense that these two statements are true:

1. if A is provable in T then Provable(ðAñ) is provable in T

2. if A is not provable in T then ∼Provable(ðAñ) is provable in T

4

Then—and this is the most ingenious part—Gödel shows how to construct a
sentence, G, that “says” of itself that it is not provable. That is, this sentence is
a theorem of T :

G↔∼Provable(ðGñ) (*)

Now we can prove the �rst incompleteness theorem, which says that if T is
consistent, some sentence is such that neither it nor its negation is provable in
T . (If T is inconsistent then it is trivially complete, since from a contradiction,
every sentence is provable.) That sentence is G. I’ll just give half of the proof:

Suppose that T is consistent and that G is provable. Then by (P), Provable(ðGñ)
is provable. But also, since (*) is provable,∼Provable(ðGñ) is also prov-
able, which contradicts the fact that T is consistent.

The other half is a little more complicated, but it shows that if T is consistent1,
then the supposition that ∼G is provable leads to a contradiction.

Thus neither G nor∼G is provable, and so T is incomplete. Since T is required
only to be able to prove a minimal amount of arithmetic, it follows that pretty
much any mathematical theory of interest is not going to be capable of being
fully axiomatized.

5. Second incompleteness theorem

In the previous section we showed this conditional statement to be true:

If T is consistent then G is not provable

The next thing Gödel does is to show that, if the theory T is just a bit stronger
than before—in particular, if certain arguments by induction can be done in
T —then this argument can be formalized in T . Recall above that the sentence
∼∃x(Proof(x) ∧ Contains-contradiction(x)) formalizes the claim that there
exists no proof of a contradiction. Call this sentence CON. Gödel was able to
show that this sentence is provable in T :

CON→∼Provable(ðGñ) (**)

Basically, he does this by running through an analogous argument to the one
of the previous section, but within the theory T .

1Technically, “ω-consistent”.

5

We can now argue as follows

i) Suppose for reductio that CON is provable.

ii) Then since (**) is provable, so is ∼Provable(ðGñ)

iii) Then, since (*) is provable, so is G

iv) But we earlier showed that G is not provable. Therefore, CON is not
provable. That is, T cannot “prove its own consistency”

But T was an arbitrarily chosen theory that was “slightly more than minimally
strong”. Thus this shows that no minimally strong theory can prove its own
consistency.

This is fatal to Hilbert’s program. His �nitary methods of proof can all be
formalized in a theory T that is only slightly more than minimally strong. So if
his methods succeeded in proving the consistency of T , one could prove the
consistency of T within T . Since that’s impossible, it follows that Hilbert’s
methods cannot prove the consistency of T . And so they certainly can’t prove
the consistency of arithmetic (since a proof of the consistency of arithmetic
would ipso facto be a proof of T , which is a part of arithmetic), let alone stronger
theories like analysis and set theory.

6

