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A FOUNDATIONAL CRISIS  Philosophy of Mathermatics

1. Foundations

There was a crisis in the foundations of mathematics around the beginning of
the 20th century, centered on the notion of infinity.

2. Actual versus potential infinity (Aristotle)

Actual infinity an infinite collection of objects, all of which actually exist.
Potential infinity a collection of objects that always can be increased further
Some confusing things about infinity:

Hilbert’s Hotel: (a full infinite hotel frees up a room by having each occupant
move up one floor)

Zeno’s paradox (one of them): motion is impossible, because in order to reach a
. . . . 1
point one meter away, you’d need to do infinitely many things: travel ;
1 1
meter, then travel ; meter, then travel ¢ meter, and so on.

(Aristotle’s solution: you don’t need to do all of these things, since the
one-meter portion of space is merely potentially infinitely divisible.)

Historically, mathematicians didn’t think too seriously about actual infinities,
but infinite collections started showing up in the foundations of mathematics
in the nineteenth century. Here are some of the places where they showed up.

3. Real numbers and infinity

The rational number line has “gaps”. It contains points that get closer and

closer to v/2, namely: 1.4,1.41,1.414,..., but not V2 itself (which is the limit of
this series).

The defining feature of the rea/ line (in its modern conception), ensures that
there are no such gaps:

Completeness: if a set of numbers has an upper bound, it has a /east upper bound



(A “bound” of § is a number that is > every member of §.)

The sets § that are relevant here are infinite sets.

4. Functions

A function is a “rule” which yields a unique number as “output”, when given
any number as “input”.

Functions were long regarded as merely being formulas. For example, the

squaring function is just the formula“f(x) = x*”.

But on a more modern conception, a function is any “arbitrary correlation”
between inputs and outputs.

Arbitrary correlations were eventually defined as infinite lists of input-output
pairs (each input is paired with its corresponding output).

5. Nonconstructive proofs

Most traditional mathematical proofs are “constructive”: to show that a certain
kind of object exists, you construct some particular object of that sort. Example
of a monconstructive proof:

Proof that some nonzero digit occurs infinitely often in the decimal expansion of 7.

Suppose for reductio that each of the digits 1-9 occurs only finitely many times.
Then once all those digits are done occurring, from that point onward the
decimal expansion would consist only of Os. 7 would therefore be a rational
number. Since 7t is known to be irrational, we have a contradiction. O

This is nonconstructive because it doesn’t say (or give a method for figuring
out) which digit occurs infinitely often.

The connection to infinity is this: in a nonconstructive proof, we consider some
actually infinite set, and argue that given its general features, it must contain at
least one object of the specified sort.



6. Cantor on sizes of infinity

Mathematicians originally thought of sets as trivial/obvious. Then Cantor
discovered that some infinite sets are bigger than others.

Examples of infinite sets that are the sazze size (equinumerous):

¢ Even natural numbers & natural numbers:

¢ Rational numbers & natural numbers:
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But Cantor proved that there are more 7es/ than natural numbers. Here is his
proof that the set of real numbers between 0 and 1 % natural numbers. Suppose



for reductio that there is some one-to-one correspondence between these sets:

1—"

3<—>7’3

Since each real number can be represented as an infinite decimal, we can
represent the one-to-one correspondence thus:

1 <~——0. a, a, ag;

2 ——0. a, a, ay

3 0. a3 a5 asy

where each 4, is a digit. Now construct a new infinite series of digits, which at
each position differs from the “diagonal sequence”:

The digits d. of this new series are::

7ifa,; =6
! 6ifa;, #£6

d. =

Now consider the real number d = 0.d,d,d,.... Since it is between 0 and 1, and
since we have supposed that the one-to correspondence correlates each real
number with some natural number, d must be equal to some ;. But consider
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the digits of 7; and d at the i spot—the spot where the decimal expansion of
r, intersects the diagonal sequence:
1 —— 0.
2 — 0.
3 — 0.

The i digit of 7, is a,;, whereas the /™ digit of d, is 7 if a,; is 6 and 6 if a ; is
not 6. Thus d # r,. Contradiction.

Cantor also showed that for any set A, the power set of A—that is, the set of all
A’s subsets, is larger than A.

7. Set-theoretic paradoxes

Later, paradoxes were discovered in “set theory”: seemingly correct arguments
leading to contradictions. The simplest was Bertrand Russell’s. Let R be the
set containing all and only the sets that aren’t members of themselves. Thus:

i) Any set that is zoz a member of itself is a member of R
ii) Any set that is a member of itself is zor a member of R
But now, either R a member of itself or it isn’t. But:

If R s a member of itself, then by ii) it wouldn’t be a member of R, and
so wouldn’t be a member of itself, which is a contradiction.

And if R isn’t a member of itself, then by i), R would be a member of R,
and so it would be a member of itself after all—another contradiction.

Eventually, a theory of sets was found that avoided the paradoxes. But for a
long time, the field was in crisis.
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