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1. Foundations

There was a crisis in the foundations of mathematics around the beginning of
the 20th century, centered on the notion of in�nity.

2. Actual versus potential in�nity (Aristotle)

Actual in�nity an in�nite collection of objects, all of which actually exist.

Potential in�nity a collection of objects that always can be increased further

Some confusing things about in�nity:

Hilbert’s Hotel: (a full in�nite hotel frees up a room by having each occupant
move up one �oor)

Zeno’s paradox (one of them): motion is impossible, because in order to reach a
point one meter away, you’d need to do in�nitely many things: travel 1

2

meter, then travel 1
4 meter, then travel 1

8 meter, and so on.

(Aristotle’s solution: you don’t need to do all of these things, since the
one-meter portion of space is merely potentially in�nitely divisible.)

Historically, mathematicians didn’t think too seriously about actual in�nities,
but in�nite collections started showing up in the foundations of mathematics
in the nineteenth century. Here are some of the places where they showed up.

3. Real numbers and in�nity

The rational number line has “gaps”. It contains points that get closer and
closer to

p
2, namely: 1.4,1.41,1.414, . . . , but not

p
2 itself (which is the limit of

this series).

The de�ning feature of the real line (in its modern conception), ensures that
there are no such gaps:

Completeness: if a set of numbers has an upper bound, it has a least upper bound
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(A “bound” of S is a number that is ≥ every member of S.)

The sets S that are relevant here are in�nite sets.

4. Functions

A function is a “rule” which yields a unique number as “output”, when given
any number as “input”.

Functions were long regarded as merely being formulas. For example, the
squaring function is just the formula“ f (x) = x2”.

But on a more modern conception, a function is any “arbitrary correlation”
between inputs and outputs.

Arbitrary correlations were eventually de�ned as in�nite lists of input-output
pairs (each input is paired with its corresponding output).

5. Nonconstructive proofs

Most traditional mathematical proofs are “constructive”: to show that a certain
kind of object exists, you construct some particular object of that sort. Example
of a nonconstructive proof:

Proof that some nonzero digit occurs in�nitely often in the decimal expansion of π.
Suppose for reductio that each of the digits 1–9 occurs only �nitely many times.
Then once all those digits are done occurring, from that point onward the
decimal expansion would consist only of 0s. π would therefore be a rational
number. Since π is known to be irrational, we have a contradiction.

This is nonconstructive because it doesn’t say (or give a method for �guring
out) which digit occurs in�nitely often.

The connection to in�nity is this: in a nonconstructive proof, we consider some
actually in�nite set, and argue that given its general features, it must contain at
least one object of the speci�ed sort.
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6. Cantor on sizes of in�nity

Mathematicians originally thought of sets as trivial/obvious. Then Cantor
discovered that some in�nite sets are bigger than others.

Examples of in�nite sets that are the same size (equinumerous):

• Even natural numbers ≈ natural numbers:

1
2
3
4
...

2
4
6
8
...

• Rational numbers ≈ natural numbers:

1
1

1
2

1
3

1
4 . . .

2
1

2
2

2
3

2
4 . . .

3
1

3
2

3
3

3
4 . . .

4
1

4
2

4
3

4
4 . . .

...
...

...
...

1 2

3

4

5 6

7

8

9

1

2

3

4

5

6

7

8

9

...

1
1
1
2
2
1
3
1
1
3
1
4
2
3
3
2
4
1

...

But Cantor proved that there are more real than natural numbers. Here is his
proof that the set of real numbers between 0 and 1 6≈ natural numbers. Suppose
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for reductio that there is some one-to-one correspondence between these sets:

1
2
3
...

r1

r2

r3

...

Since each real number can be represented as an in�nite decimal, we can
represent the one-to-one correspondence thus:

1 0. a11 a12 a13 . . .

2 0. a21 a22 a23 . . .

3 0. a31 a32 a33 . . .

...
...

...
...

...

where each ai j is a digit. Now construct a new in�nite series of digits, which at
each position differs from the “diagonal sequence”:

1 0. a11 a12 a13 . . .

2 0. a21 a22 a23 . . .

3 0. a31 a32 a33 . . .

...
...

...
...

...

The digits di of this new series are::

di =
¨

7 if ai i = 6
6 if ai i 6= 6

Now consider the real number d = 0.d1d2d3 . . . . Since it is between 0 and 1, and
since we have supposed that the one-to correspondence correlates each real
number with some natural number, d must be equal to some ri . But consider
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the digits of ri and d at the i th spot—the spot where the decimal expansion of
ri intersects the diagonal sequence:

1 0. a11 a12 a13 . . .

2 0. a21 a22 a23 . . .

3 0. a31 a32 a33 . . .

...
...

...
...

...

The i th digit of ri is ai i , whereas the i th digit of di is 7 if ai i is 6 and 6 if ai i is
not 6. Thus d 6= ri . Contradiction.

Cantor also showed that for any set A, the power set of A—that is, the set of all
A’s subsets, is larger than A.

7. Set-theoretic paradoxes

Later, paradoxes were discovered in “set theory”: seemingly correct arguments
leading to contradictions. The simplest was Bertrand Russell’s. Let R be the
set containing all and only the sets that aren’t members of themselves. Thus:

i) Any set that is not a member of itself is a member of R

ii) Any set that is a member of itself is not a member of R

But now, either R a member of itself or it isn’t. But:

If R is a member of itself, then by ii) it wouldn’t be a member of R, and
so wouldn’t be a member of itself, which is a contradiction.

And if R isn’t a member of itself, then by i), R would be a member of R,
and so it would be a member of itself after all—another contradiction.

Eventually, a theory of sets was found that avoided the paradoxes. But for a
long time, the �eld was in crisis.
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