
Part II

Formal preliminaries:
measurement theory
13. The problem of quantity

We can divide properties into qualities and quantities. (Similarly for relations.)
Qualities don’t come in degrees, quantities do. Being a US citizen is a quality.
You either are or aren’t a US citizen (as they say). Mass is a quantity: you can
have more or less mass.

When metaphysicians think about properties, they tend to think about qualities.
(Perhaps this is because our language for foundational work is predicate logic—
we’ll return to this.) But in science, especially physics, the most important
properties are quantities: mass, charge, distance, etc.

When scientists speak of quantities, they do so using numbers. Not only do
they name particular quantities using names for numbers: “5g mass”. Their
theories also make essential use of the numbers. The law F = ma says that,
given suitable choices of unit, a number representing the net force on a particle
is equal to the result of multiplying the numbers representing its mass and
acceleration.

Quantities raise an important metaphysical issue: what are the fundamental
facts of quantity like, which enable them to be spoken of and theorized about
using numbers? This is the kind of issue that metaphysics must address.

The question can be made pressing by considering the simplest theory of
quantity: that quantities are relations to numbers. On this view, the fundamental
property of mass is in fact a relation, not a property: a relation between concrete
material objects and real numbers. The relation is, perhaps, the mass-in-
kilograms relation, which holds between concrete object x and real number r
iff x’s mass is r kg.

This theory makes excellent and straightforward sense of the use of numbers
to represent quantities in science. But it is metaphysically problematic, for two
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main reasons. First, it seems to privilege a single unit of mass. Suppose for
the sake of argument that M assigns masses in kg. That is, objects that bear
M to the real number 1 are 1 kg in mass. In that case, the kg scale seems to
be objectively privileged in a way that other scales, such as the pounds scale,
are not. Put another way: consider all the functions from massive objects to
real numbers, differing from one another only in their scale. According to
the simple theory of the nature of mass, one of these functions is objectively
privileged, as being the fundamental mass relation.

Second, this theory involves real numbers in the facts of mass. The fundamental
mass facts involve real numbers no less than they involve concrete objects. Isn’t
that weird? Attempts to bring out the weirdness:

• real numbers are abstract, so causally inert, so can’t be involved in laws
of nature.

• real numbers don’t fundamentally exist, and so mass can’t fundamentally
make reference to them

• real numbers are constructed entities; and constructed entities can’t be
involved (qua the construction) in fundamental facts

Are these problems decisive? Suppose you thought that real numbers exist
fundamentally and aren’t constructed. Then the second problem might be
regarded as based on unjusti�ed dogmatic beliefs about abstracta. Why can’t
abstracta be involved the laws?

The �rst problem (about privileging a unit) seems to me to be the more serious
one. Let’s think a bit about whether it could be answered.

Could we say that, where M is a fundamental mass relation to numbers, each
“scalar transformation” of M is also fundamental? As we saw in our discussion of
mereology, there’s some pressure to say that in some cases, to avoid arbitrariness,
we ought to admit some “redundant” structure: we ought to claim that both
parthood and overlap (say) are fundamental relations. But in the case of the
scalar transformations of M , we would be accepting in�nitelymany fundamental
relations, each of which suf�ces to describe the facts (and in a way that’s exactly
parallel to each of the others).

The class-of-models approach to fundamentality would be very natural here.
Models differing only by a scalar transformation would all be regarded as
“equivalent”. What’s fundamental is what’s represented by the class of equivalent
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models. But this is precisely the kind of case where I �nd that approach so
unsatisfying. Why are those models equivalent?

So: we have seen that the simple theory, according to which quantities are
relations to numbers, is metaphysically problematic. A main metaphysical
puzzle about quantity, then, is this: why are numbers so useful in talking about
quantities, if they’re not involved in the fundamental mass facts in the way that
the simple theory says?

There is another (related) metaphysical puzzle too. As we pointed out earlier,
it’s useful in science to measure quantities with real numbers: 5kg, 7mm, etc.
But consider:

�. The mass of object o is �

�. The mass of object o is 5g

�. The mass of object o is greater than the mass of object p

�. The mass of object o is twice the mass of object p

�. The mass of object o is greater than the charge of object p

�. Smith is witty to degree 6.808942 in the Johnson scale

�. The wit of Smith is greater than the wit of Jones

�. The wit of Smith is twice the wit of Jones

The �rst statement on this list doesn’t “make sense”. Why? Because you need
to specify a scale in order to use numbers to measure mass—there’s no such
thing as having mass 5 absolutely, so to speak. (�) does make sense because it
speci�es a scale. (�) also makes sense, even though it doesn’t specify a scale,
because whether one thing is more massive than another doesn’t depend on the
scale. Similarly for (�). (�), though, doesn’t make sense: there are no absolute
comparisons of mass with charge—depends on the scales chosen. (�) doesn’t
make sense either, but for a different reason: there just couldn’t be a scale
for wit that assigned such precise numbers. It’s not that wit isn’t a quantity
at all—(�) does seem to make sense (at least in some cases). But note that (�)
doesn’t make sense: unlike for mass, it doesn’t make sense to say (literally) that
someone has twice as much wit as another.

The puzzle (or question) is: what’s going on here? What does it mean to say
that some of these uses of numbers to measure quantities don’t “make sense”;
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and why do some kinds of uses of numbers (twice-as-much-as) make sense for
some quantities (mass) and not others (wit)?

14. The idea of measurement theory

Measurement theory is a theory of the use of numbers to measure quantities. It
was developed primarily by philosophers of science, who had epistemological
concerns in mind; but it can also be used in metaphysics.

The basic idea is that numbers can be used to represent a physical system when
the numbers share the same structure as the physical system. We’ll work up to
this idea.

14.1 Using numbers to represent quantities

Let’s use the example of mass. First, let’s just consider the procedure of assigning
numbers to massive objects. This is the kind of thing we do when we choose a
scale. When we call something 5kg, for example, we’ve chosen a certain way
of assigning numbers to objects (the “kg way”) where the number 5 is assigned
to that object.

Consider this assignment of numbers to massive objects:

4 5 167 7 5

This might seem like a silly assignment. After all the biggest number it assigns,
167, isn’t the most massive object. However, it’s not entirely silly. Notice that
there are only two objects that are the same mass, the second and the �fth; and
they are the only objects that are assigned the same number. So we can say the
following about this assignment:

(�) x is assigned the same number as y iff x and y have the same mass

Thus, the assignment here re�ects certain facts about mass. Put another way,
certain facets of the assignment are physically signi�cant: namely: identity and
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difference of numbers assigned. Given this, there is certain information about
the masses of objects we can recover, if someone tells us the numbers assigned
to objects: namely, information about the same-mass-as relation.

So, the assignment isn’t totally silly; it re�ects some of the facts about mass.
However, there are more facts about mass. For example, some things are more
massive than others; you can line up the objects from least to most massive:

Accordingly, we might choose an assignment of numbers that re�ects this
ordering of the massive objects:

4 4 5 7 167

The assignment of numbers “re�ects” the facts about which objects are more
massive in the sense that it obeys this principle:

(�) x is assigned a greater number than y iff x is more massive than y

The assignment now encodes more facts about mass than it used to. It now en-
codes both the same-mass-as relation and also the more-massive-than relation.

Here’s another way to think about it. The numbers we are using to represent
mass have various numerical features: there is of course an identity relation
over the numbers; but there’s also a relation being-a-greater-number-than.
In moving to this second assignment, we’re taking advantage of more of the
numerical features: in the �rst assignment, the greater-number-than relation
over numbers wasn’t used to represent anything about mass, but it is used in
the second assignment.

We’re still not using all the features of the numbers that we can. The smallest
objects aren’t that much smaller than the other objects, but they’re getting
assigned much smaller numbers. We’re not using the sizes of numbers to repre-
sent anything, aside from which numbers are bigger than others. And, there is
something signi�cant about mass that our assignment still isn’t capturing: facts
about how much bigger one mass is than another. For example, in the diagram,
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the �rst two objects appear to be half as big as the third; and the second and
third objects seem to have a combined mass that’s the same as the fourth. Let’s
assume that each mass in the diagram starting with the third is as massive as
the two preceding masses combined. We could re�ect this in an assignment
like the following:

4 4 8 12 20

The assignment has this property, in addition to the properties (�) and (�):

(�) The sum of the numbers assigned to x and y equals the number assigned
to z iff x and y’s combined masses equal z’s mass

Now we’re using facts about the sums of assigned numbers to code up facts
about this three-place mass relation: x and y’s combined masses equals z’s mass.
Note: this name I’m giving to this relation may suggest that to say that x and y’s
combined masses equals z’s mass is to say that in some underlying numerical
scale, if you add the numbers assigned to x and to y together, you get the
number assigned to z. But that’s not the idea. The idea is rather that this is
simply a three-place relation between objects that is not de�ned in terms of
numbers at all. Indeed, it is a relation you could measure directly: put the
objects x and y on one side of a scales, put z on the other, and see if they
balance. (Well, this works if x and y don’t overlap. But the idea is supposed to
be that if C (x, x, y) then y’s mass is double x’s. So the real way to test whether
C (x, y, z) is to put three nonoverlapping objects with the same masses as x, y,
and z, respectively, on the scales—where two objects have the same mass iff
each is at least as massive as the other.)

Notice that the last assignment isn’t the only one that satis�es (�), (�), and (�).
Here is another one:

1 1 2 3 5

So to sum up: we can assign numbers to objects in a way that encodes informa-
tion about the objects’ nonnumeric properties. And there are different degrees
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of information that can be encoded (recall (�), (�), and (�)).

14.2 Relational structures, homomorphisms and representation theo-
rems

Let’s generalize some of these ideas. Suppose we’re trying to represent some
nonnumeric facts using numbers.

• Think of the nonnumeric facts—such as the nonnumeric facts about
mass—as a relational structure: an n-tuple hA, R1 . . . Rni, where A is a
set and R1 . . . Rn are relations on that set. In the example of mass, the
initial relational structure we chose had no relations, and just the set
A of the �ve massive objects. The second relational structure included
the two-place relation ⌫ of being at-least-as-massive-as; and the third
relational structure included both ⌫ and the three-place relation C of
combining-to-equal-in-mass: hA,⌫,C i.

• Think of the mathematical entities we’re using as another relational
structure. In the case of the third assignment, the mathematical structure
would be hR,�,+i, where R is the set of real numbers, � is the greater-
than-or-equal-to relation on those numbers, and+ is the addition relation
on real numbers: +(x, y, z) holds iff x + y = z.

• A mathematical structure hB , S1 . . . Sni will be useful tool to represent a
nonmathematical structure hA, R1 . . . Rni if it contains a “homomorphic
image” of that nonmathematical structure—iff there is some function f
(a “homomorphism”) from A into B such that for each Ri , Ri (x1 . . . xm)
iff Si ( f (x1) . . . f (xm)). For example, the function indicated by the lines
in the third example is a homomorphism from hA,⌫,C i into hR,�,+i.
(Needn’t be an ismomorphism—two objects can have the same mass and
thus get assigned to the same number.)

• The basic idea is that homomorphic structures have analogous structure.
If we have a homomorphism, we can use it to pass from information about
the mathematical structure to information about the nonmathematical
structure. For example, let f be the homomorphism from hA,⌫,C i
into hR,�,+i that was discussed above (it assigns the values 4,4,8,12,20
to the masses depicted; call them a, b , c , d , e). Simple arithmetic tells
us that +(8,12,20); but then since f (c) = 8, f (d ) = 12, f (e) = 20, we
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can infer from the fact that f is a homomorphism that C (a, b , c). A
homomorphism, in fact, is just a particular scale.

The main thing measurement theory does is prove stuff about these homomor-
phisms. For example, it shows how prove that if a nonmathematical structure
has certain features, then there exists at least one homomorphism from it
into an appropriate mathematical structure. Theorems to the effect that such
homomorphisms exist are called “representation theorems”.

14.3 Uniqueness theorems

We saw that the homomorphisms we were discussing aren’t unique. In the
example of the Fibonacci mass series, the function assigning 4,4,8,12,20 was a
homomorphism; but so was the function that assigned 1,1,2,3,5. This corre-
sponds to the fact that a choice of scale is arbitrary.

One thing we want to know is “how unique” the homomorphisms—scales–
are. What we would expect, in the case of mass, is that every scale would be
a constant multiple (often called a similarity transformation) of every other:
i.e., if f and g are homomorphisms from hA,⌫,C i to hR,�,+i, then for some
positive real number k, for all x 2A, f (x) = k g (x). Proving this fact is called
proving a “uniqueness theorem”.

Suppose all the homomorphisms from the nonmathematical to the mathemat-
ical structure are similarity transformations of each other. Then we say we
have a “ratio scale”, because even though the scales (homomorphisms) assign
different absolute values, they all assign the same ratios. For let f and g be any
scales and x and y be any two massive objects; then:

f (x)
f (y)

=
k g (x)
k g (y)

=
g (x)
g (y)

One kind of uniqueness theorem, then, would say that any two homomorphisms
from a certain nonmathematical structure into a certain mathematical structure
are similarity transformations. There are other kinds of uniqueness theorems
one could prove. (Which kind of uniqueness theorem can be proved depends
on the features of the relational structures in question.) For some pairs of
mathematical and nonmathematical structures, the uniqueness theorem says
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that any two homomorphisms f and g are af�ne transformations, in that for
some constants k > 0 and a, f (x) = k g (x)+ a (for all x). In these cases we call
the scale an “interval scale”, since all such functions agree on ratios of intervals,
in that for any x and y,

f (x1)� f (x2)
f (y1)� f (y2)

=
g (x1)� g (x2)
g (y1)� g (y2)

The big difference here is that which element is assigned to the number zero
by an interval scale is physically insigni�cant. So this would be appropriate
for temperature (ignoring absolute zero). Which element is assigned to zero is
physically signiciant in the case of mass, since there are no negative masses.

Another case (here the homorphisms are much less unique): an ordinal scale is
one where all that is preserved by the homomorphisms is order—

f (x)> f (y) iff g (x)> g (y)

To summarize:

Scale type Preserves Transformations
Ratio ratios similarity ( f = k g )
Interval ratios between intervals af�ne ( f = k g + a)
Ordinal order monotone

14.4 Assumptions made

Representation and uniqueness theorems need to make certain assumptions
about the nonmathematical structure in question. For example, take the exam-
ple of hA,⌫,C i and hR,�,+i. In order to prove that these are homomorphic,
you’re going to need to assume that the relation ⌫ is transitive. Why? Because
� is transitive. Suppose that there does exist a homomorphism f ; and suppose
that x ⌫ y and y ⌫ z. By the de�nition of homomorphism, it follows that
f (x) � f (y) and f (y) � f (z). But by the transitivity of �, f (x) � f (z); and
then by the de�nition of homomorphism, x ⌫ z. What we just showed is that
if there exists any homomorphisms at all, then ⌫ is transitive. So if ⌫ isn’t
transitive, then there can’t exist any homomorphisms.
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Here is an example in which the failure of such an assumption means that you
can’t have a representation theorem (at least, of the sort we’ve been discussing).
Consider representing the painfulness-to-me of certain pains, and in particular
the structure hP, Ri where P is the set of my pains and R is the relation of being
more painful than. Is there a homomorphism from this structure to hR,>i?
You might think sure, since it’s plausible that R is transitive. But in order for
there to be a homomorphism, R needs to be more than transitive: it also needs
to be “negatively transitive”, i.e., it needs to be that if ⇠Rxy and ⇠Ry z then
⇠Rx z . The reason is that > is negatively transitive (the negation of > is just ,
which is transitive). And it’s arguable that R isn’t negatively transitive. Consider
a series of painful punches to my stomach, p1 . . . pn in which adjacent members
vary in force to such a small degree that I can’t tell them apart, but in which the
last member is de�nitely less painful than the �rst. Let pi and pi+1 be adjacent
members. Since I can’t tell them apart, it would seem that ⇠R pi pi+1. So if ⇠R
is transitive, it follows that ⇠R p1 pn. But that’s false; R p1 pn. So: there just can’t
be a homomorphism. If R isn’t negatively transitive, then you just can’t use
numbers to represent pains, in the sense that a higher number is to be assigned
iff the pain is greater.

Here’s another example. Suppose that there existed massive objects of each
�nite mass; but that there also existed an in�nitely massive object—in�nite in
the sense that it is more massive than each of the �nitely massive objects. In
that case there again couldn’t be a representation theorem (of the type we’ve
been talking about). For the homomorphism would need to “use up” all the
real numbers in its assignments to all the �nite things; but then there would be
no number left to assign to the in�nite thing.1 The assumption that there are
no masses “at in�nity” is usually called an “Archimedean” assumption: that any
mass can be reached or exceeded from any other “by a �nite number of steps”.
One such assumption may be set up as follows. First we need to de�ne the idea
of x being “n times as massive as” y:

M n xy =df for some y1 . . . yn :
y1 = y,

C (y, yi , yi+1) for 1 i < n, and
yn = x

1To make this argument rigorous, you’d need to re�ne the statement of the example: it
would need to say that the Archimedean assumption is obeyed for the �nite things.
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Here, then, is the Archimedean assumption:

For any x and y, if x ⌫ y then for some positive integer n and some
z, M n zy and z ⌫ x

So: representation and uniqueness theorems are proved, for particular non-
mathematical and mathematical structures obeying certain assumptions. Here
is a typical set of assumptions for a quantity likemass (thesemay not be suf�cient
to prove the representation and uniqueness theorems; I haven’t checked):

• ⌫ is transitive and strongly connected (i.e. x ⌫ y or y ⌫ x holds for each
x and y)

• C is “commutative” and “associative” in that:

if C (x, y,a) then C (y, x,a)

if C (x, y,a) and C (a, z, b ) and C (y, z, c) then C (x, c , b )

• Adding the same mass preserves ⌫, in that:

if x ⌫ y, and if C (x, z, x 0) and C (y, z, y 0), then x 0 ⌫ y 0

• if C (x, y, z) then z � x (mass is never negative)

• Archimedean assumption

• Existence of multiples: for each x and integer n, there exists some y such
that M n y x

14.5 Sketch of proofs

Proving representation theorems and uniqueness theorems can be tricky, but
it’s nice to have a rough idea of how it goes. So I’ll sketch proofs in the case
of the nonmathematical structure hA,⌫,C i for mass discussed above, and the
mathematical structure hR,�,+i.
In the proofs, it will be helpful to use the de�ned notion of one object being
more massive than another. This can be de�ned thus:

x � y =df y ✏ x

(I’ll also sometimes write x � y or x � y in place of y ⌫ x or y � x, respectively.)
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We’ll also need to use various facts. Of course we’ll need to use the de�nition
of a homomorphism, and the various assumptions about the mass structure.
We’ll also need to use some facts that can be proved from these. For example,
just as homomorphisms must “respect” ⌫ and C , they must also also respect
the de�ned relations M n and �:

M n xy iff g (x) = n g (y)
x � y iff g (x)> g (y) (for any homomorphism g )

(To see that the �rst is true, note that given the de�nition of “M n xy”, and given
how homomorphismsmust interact with C facts, g (x) = g (y)+ g (y) · · ·+ g (y)| {z }

n times

.)

OK, here is a sketch of how to prove the representation theorem. We must
prove that there exists at least one homomorphism f from the mass structure
into the real numbers structure. The proof has two halves. In the �rst half,
we construct a certain function f , and in the second half, we show that f is a
homomorphism. I’m only going to do the �rst half.

The �rst step in constructing f is to arbitrarily pick some object e 2A that will
function as the unit. So we’ll let f (e) = 1.

Now take any other a 2A. What should we set f (a) to be? As we’ll see, we no
longer have any freedom in this. If we want f to be a homomorphism, the fact
that we let f (e) = 1 determines what we must have f assign to all other objects.

If a happens to be exactly n times as massive as e , for some integer n (i.e. M nae)
then since homomorphisms must respect M n, we must let f (a) = n f (e) = n.
Similarly, if e just happens to be n times as massive as a, then we must let
f (a) = 1

n .

Even if neither of these cases holds, so that neither a nor e is a “multiple” of
the other, it might be that some mass is a “multiple” of both. That is, perhaps
for some x 2A, and some integers m and n, M m xe and M n xa. [Draw picture.]
Then we must set f (a) = m

n . (Because n f (a) = f (x) = m f (e) = m.)

It might be that none of these hold. (This happens when a’s mass is measured
by an irrational number, relative to our choice of e as the unit.) But even then,
the choice of f (a) is determined. To work up to this, suppose that for some
integers m and n, something that is m times e is smaller than something that is
n times a. [DRAW this—begin with the diagram for the previous point, but
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make the object that is m times e smaller; and point out that m + 1 times e
will then be larger than n times a.] That is, for some x and y, M m xe , M nya,
and x � y. Then m

n is below what we must set f (a) to. This is intuitively true,
but here’s why it’s true: since M m xe and M nya, (*) requires that f (x) = m and
f (y) = n f (a); so m

n = f (a) f (x)
f (y) ; but since x � y, f (x)< f (y) and so f (x)

f (y) < 1.

So what we’ve seen so far is this: when m times e is smaller than n times a,
m
n will be less than what we must make f (a). But notice that by appropriate
choices of m and n, we can make m

n get closer and closer to what f (a) must be:
we make m times e be closer and closer (albeit still smaller) than n times a. It
turns out that the limit (least upper bound) of all such fractions m

n is what we
must set f (a) to.

(I haven’t made this rigorous; but it’s easy to see where the Archimedean
assumption is needed. If it failed, then there might be no m and n such that m
times e is smaller than n times a—a might be “in�nitesimally small” relative to
e .)

So that is the sketch of the construction of f . The next step, were we continuing,
would be to show that f is a homomorphism.

What about the uniqueness theorems? We want to show that any two homo-
morphisms are scalar multiples of each other. The way we do it is to show that
any homomorphism g is a scalar multiple of the homomorphism f that we
constructed earlier—i.e., that for all a 2A, g (a) = k f (a) for some constant real
number k. How should we choose the constant k? Well, k needs to equal g (a)

f (a)
for all a if we’re to succeed; but f (e) = 1; so k must be g (e).

So, let’s show that g (a) = g (e) f (a), i.e., that g (a)
g (e) = f (a) for all a. Suppose for

reductio that g (a)
g (e) 6= f (a). Then either g (a)

g (e) < f (a) or g (a)
g (e) > f (a). Let’s consider

the �rst case (the proof in the case of the second is parallel.) Between any two
real numbers there is some rational number; so there are integers m and n
such that g (a)

g (e) <
m
n < f (a). Now, let’s choose an object x whose mass is m times

that of e , and an object y whose mass is n times that of a. That is, M m xe and
M n ya. (Note the use of the existence of multiples.) Given (*), g (x) = m g (e),
and g (y) = n g (a). So g (a)

g (e) =
m g (y)
n g (x) ; and so, since g (a)

g (e) <
m
n , we know that g (y)

g (x) < 1
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and so y � x. But given (*), f (x) = m f (e) and f (y) = n f (a), and so:
m
n

f (a)
=

f (x)
f (y)

But the left hand side of this is less than 1 (since m
n < f (a)) whereas the right

hand side is greater than 1 (since y � x).

14.6 Kinds of quantities

We’ve seen how to prove representation and uniqueness theorems for mass.
Quantities other than mass might obey similar theorems. For example, sup-
pose that instead of dealing with massive objects, we were instead dealing
with measuring rods. We would have a binary relation of at-least-as-long-as,
and a three-place relation of concatenation: one rod is as long as two others
laid end-to-end. These relations might obey exactly parallel assumptions to
those obeyed by ⌫ and C . And so one could prove the same uniqueness and
representation theorems (since those theorems depend only on the structure
of the assumptions).

The theorems relied essentially on there being the mass relations C and ⌫: on
it making sense to speak of one object being at least as massive as another, and
of one object being the combined mass of two others. These seem like sensible
assumptions to make about mass, but for other quantities, parallel assumptions
aren’t justi�ed. Take wit, for example. Perhaps it makes sense to speak of
one person being at least as witty as another. But it surely makes no sense to
speak of one person as being exactly as witty as two other people combined.
What this means is that we can’t have a representation theorem for wit of the
same sort as the one we had for mass. The one for mass relied essentially on
using the relation C to constrain the homomorphisms. But we may be able
to prove a different kind of representation theorem. If the at-least-as-witty
relation has certain appropriate features, then we may be able to prove that the
structure hP,⌫W i (P = the set of people; ⌫W= the at-least-as-witty relation)
is homomorphic to hR,�i, and that all homomorphisms have the same order.
The size of the numbers assigned would not be signi�cant; all that would be
signi�cant is their order.

It could be even worse. Maybe the ⌫W relation isn’t connected. In that case
we won’t be able to have such homomorphisms (because � is connected).
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But we could still have a kind of representation theorem: maybe hP,⌫W i
is homomorphic to some mathematical structure other than hR,�i (some
structure that isn’t linearly ordered). That wouldn’t bemuch of a representation,
but still.

14.7 Measurement theory: metaphysics and epistemology

Measurement theory was largely developed by philosophers of science whowere
concerned with questions like: we can’t observe correlations between physical
objects and real numbers, so how can the use of real numbers be justi�ed in
terms of things we can observe?

But metaphysicians also have concerns about quantity (as we noted earlier), and
they too can answer them using measurement theory. Recall how we introduced
two main concerns about quantities. First, how can numbers be so useful in
science, when the fundamental facts about the quantities don’t involve numbers
at all? And second, what does it mean to say that certain kinds of claims (such
as the claim that some object mass has mass 2, or that there is a scale in which
we can measure wit using real numbers)? There are natural ways to answer
these questions using measurement theory.

To the �rst, we could say that the relations in the nonmathematical structures
(⌫ and C in the case of mass) are fundamental relations. We could then use
the representation and uniqueness theorems to show how numbers could be
useful in science, even though the fundamental mass relations have nothing to
do with numbers. What we do when we use numbers to talk about a quantity
is: we pick one of the homomorphisms, and use it to talk about objects. Talk
of the numbers assigned by such a homomorphism carries with it information
about the purely nonmathematical structure, as we saw earlier.

As for the second: as we saw, there is more than one homomorphism from
hA,⌫,C i into hR,�,+i. So if you just say “the mass of an object is 2”, which
homomorphism are you talking about? Now, even when you say “the ratio of x’s
mass to y’s mass is 1.75”, there still is the problem that you haven’t mentioned a
speci�c homomorphism. But here it doesn’t matter as much, since the statement
doesn’t vary in truth value from homomorphism to homomorphism. (One
could have said instead: “on every homomorphism, the ratio of x’s mass to
y’s mass is 1.75”.) What about wit? Why is it wrong to measure wit with
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real numbers? This is a little tricker, but the crucial thing is that there is no
metaphysical basis for a ratio scale of wit, in that: there are no wit relations
such that a wit structure is homomorphic to hR, �,+i. Now, this is tricky,
for there may well be (abundant) relations over people with the right formal
properties. But none of these is “distinguished”. (The issue is tricky because
no wit relations are perfectly fundamental anyway.)

Metaphysicians and philosophers of science have different concerns, which can
lead them in different directions here. Just a few examples. First, notice that
relations like ⌫ and C are comparative. They don’t specify particular masses
of their relata, they only specify relative mass relations. It’s very natural to
focus on such relations if you’re concerned with epistemology, because relative
mass relations are the ones we directly measure. But it’s less clear whether
it’s plausible to take such comparisons to be fundamental relations. After all,
doesn’t the fact that x is at least as massive as y hold in virtue of the particular
masses of x and y? (We’ll talk about this kind of issue at length.)

To take another example, the representation and uniqueness theorems make
certain existence assumptions. The uniqueness theorem, for example, makes
essential use of the assumption of the existence of multiples. There is a kind of
epistemic concern here: how dowe know that we can always �nd suchmultiples?
But there is a more pressing concern: is the metaphysical assumption that there
exist all these multiples justi�ed? Couldn’t I have exactly the same mass as I
actually have, even if there didn’t exist arbitrarily large multiples?

To take a �nal example, philosophers of science often worried that certain of
the assumptions, such as the transitivity of⌫, are unjusti�ed given experimental
error. Suppose the idea of x ⌫ y is “if you put x and y on a scale, the y side
won’t move downward”. And suppose your scale won’t register differences
smaller than a certain amount. Then this relation will be intransitive. But this
sort of concern doesn’t seem to have any metaphysical analog.

15. Mundy’s second-order theory

Brent Mundy puts forward an alternate, "second-order", version of measure-
ment theory. The basic elements are as follows:

• Platonism about properties. (There exist properties—even uninstantiated
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