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1. The problem of quantity

Let’s distinguish between properties (and relations) that are quantitative, and
those that are nonquantitative. Quantitative properties come in degrees. Mass
is quantitative: you can have more or less mass. Nonquantitative properties,
such as Being a US citizen, don’t come in degrees. It makes no sense to speak
of one person being “more of a US citizen” than another (unless you’re just
saying that the �rst person is a US citizen and the second person isn’t). If P is a
nonquantitative property, then “you either have it or you don’t”, as they say
(misleadingly, since the law of the excluded middle has nothing to do with it).

When metaphysicians think about properties, they tend to think about non-
quantitative properties. (Perhaps this is because our language for foundational
work is predicate logic.) But in science, especially physics, the most important
properties are quantitative: mass, charge, distance, etc.

When scientists speak of quantities, they do so using numbers. In addition
to using numbers to construct names of particular quantities, such as ‘has 5g
mass’, they also make essential use of numbers when stating general laws. For
instance, the ideal gas law, pV = nT , says that, given suitable choices of units,
a number p representing the pressure of a given sample of ideal gas, multiplied
by a number V representing its volume, equals the number n of molecules
in the gas multiplied by its temperature T . If it weren’t possible to represent
pressure, volume, and temperature using numbers, the ideal gas law wouldn’t
even make sense.

Quantities raise many important metaphysical issues. One of them is simply
this: what is it about quantitative properties that enables them to be represented
using numbers? This is a central, general, foundational issue about the nature
of the world, which metaphysics ought to address.

It’s also not an easy issue. For consider the most straightforward theory of
quantity: quantitative properties are relations to numbers. On this view, mass is a
two-place relation between concrete material objects and real numbers—the

*A standard text on measurement theory is Krantz et al. (1971); for a useful introduction to
the metaphysics of quantity, see Eddon (2013).
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mass-in-kilograms relation, perhaps, which holds between a concrete object
x and real number r iff x’s mass is r kg.1 This theory makes excellent and
straightforward sense of the use of numbers to represent quantities in science.
But it is metaphysically problematic, for two main reasons.

First, this theory involves real numbers in the facts of mass. The fundamen-
tal mass facts involve real numbers no less than they involve concrete objects.
Isn’t that weird? But what exactly is the problem? Here are three arguments
one might give against the view:

i) Real numbers are abstract, so they are causally inert, so they can’t be
involved in laws of nature like pV = nT .

ii) Real numbers don’t exist, so quantitative properties can’t be relations to
them.

iii) Real numbers are constructed from sets; constructed entities can’t be
involved in fundamental facts; some facts about mass are fundamental; so
facts about mass can’t involve real numbers.

Are these good objections? In my view, i) and ii) have limited appeal: i) is
based on unjusti�ed dogmatic beliefs about abstracta, and ii) assumes nominal-
ism, which is doubtful. I myself �nd iii) compelling (see my Sider (1996)), but
the argument depends on substantial assumptions about fundamentality.

The second main reason—to my mind the more serious one—to worry
about the theory is that seems to privilege a single unit of mass. Any particu-
lar mass relation relates concrete objects to real numbers in some particular
scale; different such relations concern different scales. The relation mass-in-
kilograms is a different relation from the relation mass-in-grams, since they
relate the same concrete objects to different real numbers; and there are in-
�nitely many other mass relations, differing from each other over the scale
(or unit) in which they measure mass. But mass seems to be fundamental. So,
it would seem, if mass is a relation to numbers, it must be that just one of
these in�nitely many mass-relations is a fundamental relation. In Lewis’s terms,
exactly one of them is a perfectly natural relation. Let’s suppose (without loss

1This relation doesn’t itself come in degrees, so it seems to count as being non-quantitative.
But I said that mass is quantitative, and that mass is the relation; so what is going on? Ter-
minology is a bit awkward here, and it’s perhaps best not to try to sharpen it too much. The
intuitive idea is that mass comes in degrees, and on the theory we are currently considering,
that amounts to concrete objects bearing the mass-in-kilograms relation to different numbers.
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of generality) that mass-in-kilograms is the lucky one of the group—that it is
perfectly natural, whereas mass-in-grams and all of the others are not. That
seems crazy; surely there is nothing objectively privileged about the kilogram
unit.2

Could this worry be answered? Could we say that all of the mass relations
are fundamental? In some cases, in order to avoid arbitrariness we ought to
admit some “redundant” structure. Perhaps, for example, we ought to claim
that both parthood and overlap (say) are fundamental relations. Or, perhaps
we ought to say that in addition to negation, both conjunction and disjunction
are fundamental concepts. For it would be arbitrary to say that one but not
the other is fundamental. But in the case of the scalar transformations of M ,
we would be accepting in�nitely many fundamental relations, each of which
suf�ces to describe the facts (and in a way that’s exactly parallel to each of the
others).

So: we have seen that the simple theory, according to which quantities are
relations to numbers, is metaphysically problematic. One way to re�ne our
metaphysical puzzle about quantity, then, is this: why are numbers so useful in
talking about quantities, if they’re not involved in the fundamental mass facts
in the way that the simple theory says?

Here is another (related) metaphysical puzzle about quantities. As we
pointed out earlier, it’s useful in science to measure quantities with real numbers:
5kg, 7mm, etc. But consider:

1. The mass of object o is 5

2. The mass of object o is 5g

3. The mass of object o is greater than the mass of object p

4. The mass of object o is twice the mass of object p

5. The mass of object o is greater than the charge of object p

6. Smith is witty to degree 6.808942 in the Martin scale

7. The wit of Smith is greater than the wit of Jones

8. The wit of Smith is twice the wit of Jones
2A related concern is that the view seems to imply that there is a physically signi�cant fact

of the matter whether, for example, a given object is exactly as massive as it is charged.

3



The �rst statement on this list doesn’t “make sense”. Why? Because you need
to specify a scale in order to use numbers to measure mass—there’s no such
thing as having mass 5 absolutely, so to speak. (2) does make sense because it
speci�es a scale. (3) also makes sense, even though it doesn’t specify a scale,
because whether one thing is more massive than another doesn’t depend on
the scale. Similarly for (4). (5), though, doesn’t make sense, since there are
no absolute comparisons of mass with charge. On some choices of units for
measuring mass and charge, the number measuring o’s mass might be greater
than the number measuring p’s charge, whereas on other choices of units, the
reverse would be true. (6) doesn’t make sense either, but for a different reason:
there just couldn’t be a scale for wit that assigned such precise numbers. It’s not
that wit isn’t a quantity at all—(7) does seem to make sense (at least in some
cases). But note that (8) doesn’t make sense: unlike for mass, it doesn’t seem to
make sense to say that someone has twice as much wit as another (unless the
statement is intended metaphorically, as meaning that the �rst person is much
wittier than the second).

The puzzle (or question) is: what’s going on here? What does it mean to say
that some of these uses of numbers to measure quantities don’t “make sense”;
and why do some kinds of uses of numbers (twice-as-much-as) make sense for
some quantities (mass) and not others (wit)?

2. The idea of measurement theory

Measurement theory is a theory of the use of numbers to measure quantities. It
was developed primarily by philosophers of science, who had epistemological
concerns in mind; but it can also be used in metaphysics.

The basic idea is that numbers can be used to represent a physical system
when the numbers share the same structure as the physical system. We’ll work
up to this idea.

2.1 Using numbers to represent quantities

Suppose we want to assign numbers to physical objects, in such a way that the
numbers represent how much mass those objects have. We must choose some
particular scale when we make these numerical assignments. For instance, if we
choose the kilograms scale, a certain object, O, might get assigned the number
5; whereas if we choose the grams scale, O will get assigned the number 5000.
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However, to understand more deeply what is involved in choosing a numer-
ical scale, we need to take a few steps back, and move more slowly.

Consider some massive objects:

(The diameters of the circles represent how massive the objects are.) And
consider the following assignment of numbers to these massive objects:

4 5 167 7 5

In a sense, this is a silly assignment. After all the biggest number it assigns, 167,
isn’t the most massive object. However, it’s not entirely silly. In the diagram, two
objects have the same mass, the second and the �fth. And in fact, they are the
only objects that are assigned the same number. So we can say the following
about this assignment:

(1) x is assigned the same number as y iff x and y have the same mass

Thus, the assignment of numbers re�ects certain facts about mass. Put another
way, certain facets of the assignment are physically signi�cant: namely: identity
and distinctness of numbers assigned. Given this, there is certain information
about the masses of objects we can recover, if someone tells us the numbers
assigned to objects: namely, information about the same-mass-as relation.

So, the assignment isn’t totally silly; it re�ects some of the facts about mass.
However, there are more facts about mass beyond merely facts to the effect that
a given pair of objects do, or do not, have exactly the same mass. For example,
some things are more massive than others; you can line up the objects from
least to most massive:

Accordingly, we might choose an assignment of numbers that re�ects this
ordering of the massive objects:

4 4 5 7 167
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This assignment of numbers “re�ects” the facts about which objects are more
massive in the sense that it obeys this principle:

(2) x is assigned a greater number than y iff x is more massive than y

This assignment encodes more facts about mass than the preceding one. It
now encodes the more-massive-than relation, in addition to encoding the
has-exactly-as much-mass relation.

Here’s another way to think about it. The numbers we are using to represent
mass have various numerical features. There is of course an identity relation
over the numbers; but there’s also a relation being-a-greater-number-than.
In moving to this second assignment, we’re taking advantage of more of the
numerical features: in the �rst assignment, the greater-number-than relation
over numbers wasn’t used to represent anything about mass, but it is used in
the second assignment.

We’re still not using all the features of the numbers that we can. The
smallest two objects aren’t that much smaller than the largest object, but they’re
getting assigned a much smaller number. We’re only using the ordering of the
numbers at this point, not their sizes. But for mass, more than just the ordering
is signi�cant; there are also certain facts about how much bigger one mass is
than another. For example, in the diagram, the third object appears to be about
as massive as the �rst two combined. Let’s stipulate that this is indeed the case,
and further, that this pattern continues (as it appears to): namely, let’s assume
that each mass in the diagram starting with the third is exactly as massive as
the two preceding masses combined. We could re�ect this in an assignment
like the following:

4 4 8 12 20

This assignment has the following property, in addition to the properties (1)
and (2):

(3) The sum of the numbers assigned to x and y equals the number assigned
to z iff x and y’s combined masses equal z’s mass

Now we’re using facts about the sums of assigned numbers to code up facts
about this three-place mass relation: x and y’s combined masses equals z’s mass.
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Such a relation is often called a relation of “concatenation”: z is a (mass)
concatenation of x and y.

Note: the initial gloss I gave on C (x, y, z), namely “x and y’s combined
masses equals z’s mass” might suggest the idea that C (x, y, z) means that in
some underlying numerical scale, if you add the numbers assigned to x and
to y together, you get the number assigned to z. But that’s not the idea. The
idea is rather that C expresses a three-place relation between objects that is not
de�ned in terms of numbers at all. (It doesn’t hold “in virtue of” facts about
numerical assignments.) Indeed, it is a relation you could measure directly: put
the objects x and y on one side of a pan balance, put z on the other, and see if
they balance.3

Notice that the last assignment isn’t the only one that satis�es (1), (2), and
(3). Here is another one:

1 1 2 3 5

So to sum up: we can assign numbers to objects in a way that encodes
information about the objects’ nonnumeric properties. There are different
sorts of information that can be encoded (recall (1), (2), and (3)). And multiple
assignments can encode a given sort of information.

2.2 Relational structures, homomorphisms and representation theorems

Let’s generalize some of these ideas. Suppose we’re trying to represent some
nonnumeric facts using numbers.

• Think of the nonnumeric facts—such as the nonnumeric facts about
mass—as a relational structure: an n-tuple 〈A, R1 . . . Rn〉, where A is a
set and R1 . . . Rn are relations on that set. In the example of mass, the
initial relational structure we chose had no relations, and just the set
A of the �ve massive objects. The second relational structure included
the two-place relation � of being at-least-as-massive-as; and the third

3Well, this works if x and y don’t overlap. But the idea is supposed to be that if C (x, x, y) then
y’s mass is double x’s. So the real way to test whether C (x, y, z) is to put three nonoverlapping
objects with the same masses as x, y, and z , respectively, on the pan balance—where two objects
have the same mass iff each is at least as massive as the other.
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relational structure included both � and the three-place relation C of
mass-concatenation: 〈A,�,C 〉. (Actually, earlier I wasn’t considering �,
but rather a related relation, that of being strictly more massive than.)

• Think of the mathematical entities we’re using as another relational
structure. In the case of the third assignment, the mathematical structure
would be 〈R,≥,+〉, where R is the set of real numbers,≥ is the greater-
than-or-equal-to relation on those numbers, and+ is the addition relation
on real numbers: +(x, y, z) holds iff x + y = z.

• A mathematical structure 〈B , S1 . . . Sn〉 will be useful tool to represent a
nonmathematical structure 〈A, R1 . . . Rn〉 if it contains a “homomorphic
image” of that nonmathematical structure—iff there is some function f
(a “homomorphism”) from A into B such that for each Ri , Ri (x1 . . . xm)
iff Si

�

f (x1) . . . f (xm)
�

. For example, the function indicated by the vertical
lines in the diagram for the third numerical assignment (the one that
assigned the values 4,4,8,12,20) is a homomorphism from 〈A,�,C 〉 into
〈R,≥,+〉. (It needn’t be an isomorphism—i.e., a one-to-one function that
is a homomorphism—since two objects can have the same mass and thus
get assigned to the same number.)

• The basic idea is that homomorphic structures have analogous structure.
If we have a homomorphism, we can use it to pass from information
about the mathematical structure to information about the nonmath-
ematical structure. For example, let f be the homomorphism from
〈A,�,C 〉 into 〈R,≥,+〉 discussed above—the function that assigns the
values 4,4,8,12,20 to the masses depicted; call them a, b , c , d , e . Simple
arithmetic tells us that +(8,12,20); but then since f (c) = 8, f (d ) = 12,
and f (e) = 20, we can infer from the fact that f is a homomorphism that
C (a, b , c). This sort of homomorphism, in fact, is just a particular scale
for numerically representing mass.

The main thing measurement theory does is prove facts about these ho-
momorphisms. For example, it shows how prove that if a nonmathematical
structure has certain features, then there exists at least one homomorphism
from it into an appropriate mathematical structure. Theorems to the effect
that such homomorphisms exist are called “representation theorems”.
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2.3 Uniqueness theorems

We saw that the homomorphisms we were discussing aren’t unique. In the
example of the mass series, the function assigning 4,4,8,12,20 was a homomor-
phism; but so was the function that assigned 1,1,2,3,5. This corresponds to
the fact that a choice of scale is arbitrary.

One thing we want to know is “how unique” the homomorphisms—scales–
are. What we would expect, in the case of mass, is that every scale would be
a constant multiple (often called a similarity transformation) of every other:
i.e., if f and g are homomorphisms from 〈A,�,C 〉 to 〈R,≥,+〉, then for some
positive real number k, for all x ∈A, f (x) = k g (x). Proving this fact is called
proving a “uniqueness theorem”. (Sometimes the combination of what I have
called a representation theorem and a uniqueness theorem are together called
a “representation theorem”.)

Suppose all the homomorphisms from the nonmathematical to the mathe-
matical structure are similarity transformations of each other. Then we say we
have a “ratio scale”, because even though the scales (homomorphisms) assign
different absolute values, they all assign the same ratios. For let f and g be any
scales and x and y be any two massive objects; then:

f (x)
f (y)

=
k g (x)
k g (y)

=
g (x)
g (y)

One kind of uniqueness theorem, then, would say that any two homomor-
phisms from a certain nonmathematical structure into a certain mathematical
structure are similarity transformations of each other. There are other kinds of
uniqueness theorems one could prove. (Which kind of uniqueness theorem can
be proved depends on the features of the relational structures in question.) For
some pairs of mathematical and nonmathematical structures, the uniqueness
theorem says that any two homomorphisms f and g are af�ne transformations,
in that for some constants k > 0 and a, f (x) = k g (x) + a (for all x). In these
cases we call the scale an “interval scale”, since all such functions agree on ratios
of intervals, in that for any x and y,

f (x1)− f (x2)
f (y1)− f (y2)

=
g (x1)− g (x2)
g (y1)− g (y2)

The big difference here is that which element is assigned to the number zero
by an interval scale is physically insigni�cant. So this would be appropriate for
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temperature (ignoring absolute zero). Which element is assigned to zero is
physically signi�cant in the case of mass, since there are no negative masses.

Another case (here the homorphisms are much less unique): an ordinal scale
is one where all that is preserved by the homomorphisms is order—

f (x)> f (y) iff g (x)> g (y)

(An example is the second assignment of numbers to the �ve massive objects
considered above—the one that obeyed principle (2) but not (3).)

To summarize:

Scale type Preserves Transformations
Ratio ratios similarity ( f = k g )
Interval ratios between intervals af�ne ( f = k g + a)
Ordinal order monotone

2.4 Assumptions made

Representation and uniqueness theorems need to make certain assumptions
about the nonmathematical structure in question. For example, take the exam-
ple of 〈A,�,C 〉 and 〈R,≥,+〉. In order to prove that these are homomorphic,
you’re going to need to assume that the relation � is transitive. Why? Because
≥ is transitive. Suppose that there does exist a homomorphism f ; and suppose
that x � y and y � z. By the de�nition of homomorphism, it follows that
f (x) ≥ f (y) and f (y) ≥ f (z). But by the transitivity of ≥, f (x) ≥ f (z); and
then by the de�nition of homomorphism, x � z. What we just showed is that
if there exists any homomorphisms at all, then � is transitive. So if � isn’t
transitive, then there can’t exist any homomorphisms.

Here is an example in which the failure of such an assumption means that you
can’t have a representation theorem (at least, of the sort we’ve been discussing).
Consider representing the painfulness-to-me of certain pains, and in particular
the structure 〈P, R〉 where P is the set of my pains and R is the relation of being
more painful than. Is there a homomorphism from this structure to 〈R,>〉?
You might think: sure, since it’s plausible that R is transitive. But in order for
there to be a homomorphism, R needs to be more than transitive: it also needs
to be “negatively transitive”, i.e., it needs to be that if ∼Rxy and ∼Ry z then
∼Rx z . The reason is that > is negatively transitive (the negation of > is just ≤,
which is transitive). And it’s arguable that R isn’t negatively transitive. Consider
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a series of painful punches to my stomach, p1 . . . pn, in which adjacent members
vary in force to such a small degree that I can’t tell them apart, but in which the
last member is de�nitely less painful than the �rst. Let pi and pi+1 be adjacent
members. Since I can’t tell them apart, it would seem that ∼R pi pi+1, for each
i . So if ∼R were transitive, it would follow that ∼R p1 pn, which isn’t true. So:
there just can’t be a homomorphism. If R isn’t negatively transitive, then you
just can’t use numbers to represent the more-painful-than relation over pains,
in the sense that a higher number is to be assigned if and only if the pain is
greater.

Here’s another example. Suppose that in addition to “�nitely massive”
objects there also exists an “in�nitely massive” object—in�nitely massive in the
sense that (roughly) that no �nite number of combinations of �nitely massive
objects can reach the mass of the in�nitely massive object. In that case there
again couldn’t be a representation theorem (of the type we’ve been talking
about). For (roughly): a homomorphism needs to assign each massive object a
real number; thus both �nitely massive and the in�nitely massive object get
assigned real numbers as their masses; but any real number can be reached
from any smaller real number by repeatedly adding the smaller real number to
itself. Thus in order for a representation theorem to be provable, one needs to
make an “Archimedian” assumption: that any mass can be reached from any
other by a �nite number of steps.

One such assumption can be made precise introducing the notion of one
object being “n times as massive as” another object. How should we de�ne the
notion of an object, x, being, say, four times as massive as another object y?
We should de�ne it as meaning that if you add—concatenate—y to itself three
times, the result is x. That is: if you concatenate y with itself, resulting in an
object, a, that is twice as massive as y; and then concatenate a with y, resulting
in an object, b , that is three times as massive as y; and then concatenate b with
t , then x is the result:

y a b x

concatenate with y concatenate with y concatenate with y

More carefully and of�cially, we should de�ne ‘x is four times as massive as y’
as meaning that there exist objects a and b such that C yya, C yab , and C y b x.

11



More generally, we can de�ne ‘x is n times as massive as y’—or, more brie�y,
‘M n xy’—as follows:

M n xy =df for some y1, . . . , yn :
y1 = y,

C (y, yi , yi+1) for 1≤ i < n, and
yn = x

And we can then use this notion to state the Archimedean assumption:

For any x and y, if x � y then there exist some positive integer n and
some object z such that M n zy and z � x

So: representation and uniqueness theorems are proved, for particular
nonmathematical and mathematical structures obeying certain assumptions.
Here are some typical assumptions for a quantity like mass (these may not
be suf�cient to prove the representation and uniqueness theorems; I haven’t
checked):

• � is transitive and strongly connected (i.e. x � y or y � x holds for each
x and y)

• C is “commutative” and “associative” in that:

if C (x, y,a) then C (y, x,a)

if C (x, y,a) and C (a, z, b ) and C (y, z, c) then C (x, c , b )

• Adding the same mass preserves �, in that:

if x � y, and if C (x, z, x ′) and C (y, z, y ′), then x ′ � y ′

• if C (x, y, z) then z � x (mass is never negative or zero)

• Archimedean assumption

• Existence of multiples: for each x and integer n, there exists some y such
that M n y x
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2.5 Sketch of proofs

Proving representation theorems and uniqueness theorems can be tricky, but
it’s nice to have a rough idea of how it goes. And it also brings out why one
needs to make some of the assumptions mentioned above, in order to prove
the theorems. (The assumption of the Existence of Multiples, in particular,
is worth �agging, since it is a strong assumption. It implies that there exist
in�nitely many objects, with arbitrarily large masses!4)

So I’ll sketch parts of the proofs in the case of the nonmathematical structure
〈A,�,C 〉 for mass discussed above, and the mathematical structure 〈R,≥,+〉.

In the proofs, it will be helpful to use the de�ned notion of one object being
more massive than another. This can be de�ned thus:

x � y =df y � x

(I’ll also sometimes write x � y or x ≺ y in place of y � x or y � x, respectively.)
We’ll also need to use various facts. Of course we’ll need to use the de�nition

of a homomorphism, and the various assumptions about the mass structure.
We’ll also need to use some facts that can be proved from these. For example,
just as homomorphisms must “respect”� and C , they must also also respect
the de�ned relations M n and �:

M n xy iff g (x) = n g (y)
x � y iff g (x)> g (y) (for any homomorphism g )

(To see why the �rst is true, consider an example. As we saw earlier, to say
that x is four times as massive as y is to say that there exist objects a and
b such that C yya, C yab , and C y b x. Given that C yya, the de�nition of a
representation function for mass tells us that f (a) = f (y) + f (y) . Similarly,
since C yab , f (b ) = f (y) + f (a); and since C y b x, f (x) = f (y) + f (b ). Thus
f (x) = f (y)+ f (y)+ f (y)+ f (y) = 4 f (y). In general, M n xy is true if and only
if g (x) = g (y)+ g (y) · · ·+ g (y)

︸ ︷︷ ︸

n times

.)

OK, here is a sketch of how to prove the representation theorem. We must
prove that there exists at least one homomorphism f from the mass structure

4It’s possible to replace this assumption with a different assumption, the assumption of the
“existence of divisors”, which also implies that there exist in�nitely many objects, but which
implies, not that there exist arbitrarily massive objects, but rather that there exist objects with
arbitrarily small (but still positive) masses.
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into the real numbers structure. The proof has two halves. In the �rst half,
we construct a certain function f , and in the second half, we show that f is a
homomorphism. I’m only going to do the �rst half.

The �rst step in constructing f is to arbitrarily pick some object e ∈A that
will function as the unit. So we’ll let f (e) = 1.

Now take any other a ∈A. What should we set f (a) to be? In fact, it turns
out that once we have chosen e as our unit—i.e., once we have chosen that
f (e) = 1—the f -values for all other members of A are thereby determined. Thus
there is some particular number that we must set f (a) to.

It’s easy to see why this is in various special cases. For example, suppose
that a happens to be exactly four times as massive as e . Then, given the fact we
mentioned earlier, namely that homomorphisms must “respect” the relation
M n, it follows that if f is to be a homomorphism, since M 4ae , it must be that
f (a) = 4 f (e). Thus we must set f (a) to be 4. In general, if a happens to be
exactly n times as massive as e , then we must set f (a) to be n.

Similarly, if a just happens to be such that e is n times as massive as it (for
some positive integer n), then it must be that f (e) = n f (a), so we must set
f (a) = 1

n .
Even if neither of these cases holds, so that neither a nor e is a “multiple”

of the other, there may happen to exist some third mass that is a multiple of
both a and e . For example, suppose there happens to exist some x that is both
�ve times as massive as e and also three times as massive as a:

a e

x

Then we must set f (a) to 5
3 . The reason is that since x is �ve times as massive

as e , f (x) = 5; but then since x is three times as massive as a, f (x) = 3 f (a), so
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f (a) = f (x)
3 =

5
3 . And in general, if there exists some x that is m times as massive

as e and also n times as massive as a, then we must set f (a) = m
n . (Because

n f (a) = f (x) = m f (e) = m.)
It might be that none of the above holds. (This happens when a’s mass is

measured by an irrational number, relative to our choice of e as the unit.) But
even then, the choice of f (a) is determined.

Suppose that some x is, as before, exactly �ve times as massive as e ; but now
suppose that, although x isn’t exactly three times as massive as a, there exists
some other object, y, which is more massive than x, and which is exactly three
times as massive as a:

a e

xy

Then 5
3 is below what we must set f (a) to.5 (In general, when some object x

that is m times as massive as e is less massive than some object y that is n times
as massive as a, m

n will be less than what we must make f (a).)
What’s the point of considering x and y? Well, consider the fraction 5

3 as a
�rst draft: an initial rough estimate of what f (a) needs to be. It’s admittedly
too low. But we could improve on it, and �nd another fraction that is closer to

5Here’s why: since M m xe and M n ya, f (x) = m and f (y) = n f (a); so m
n = f (a) f (x)

f (y) ; but

since x ≺ y, f (x)< f (y) and so f (x)
f (y) < 1.
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(but still less than) what f (a) needs to be, by choosing a new pair of objects, x ′

and y ′:

a e

x ′y ′

Here x ′ is seven times as massive as e , y ′ is four times as massive as a, and x ′ is
less massive than y ′; so 7

4 is again less than what f (a) must be; but it is greater
than our initial rough estimate 5

3 .
We can continue this process. By considering further choices for x and y,

we can �nd larger and larger fractions m
n that are less than what f (a) must be,

and thus are better and better approximations for f (a). It turns out that the
limit (least upper bound) of all such fractions is exactly what we must set f (a)
to.

(By the way, it’s intuitively easy to see where the Archimedean assumption
will be needed in a proper proof. If a were “in�nitesimally small” relative to e ,
then there couldn’t be m and n such that m times e is smaller than n times a.)

So that is the sketch of the construction of f . The next step, were we
continuing, would be to show that f is a homomorphism.

What about the uniqueness theorems? We want to show that any two
homomorphisms are scalar multiples of each other. The way we do it is to show
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that any homomorphism g is a scalar multiple of the homomorphism f that
we constructed earlier—i.e., that for all a ∈A, g (a) = k f (a) for some constant
real number k. How should we choose the constant k? Well, k needs to equal
g (a)
f (a) for all a if we’re to succeed; but f (e) = 1; so k must be g (e).

So, let’s show that g (a) = g (e) f (a), i.e., that g (a)
g (e) = f (a) for all a. Suppose

for reductio that g (a)
g (e) 6= f (a). Then either g (a)

g (e) < f (a) or g (a)
g (e) > f (a). Let’s

consider the �rst case (the proof in the case of the second is parallel.) Between
any two real numbers there is some rational number; so there are integers m
and n such that g (a)

g (e) <
m
n < f (a). Now, let’s choose an object x whose mass is m

times that of e , and an object y whose mass is n times that of a. That is, M m xe
and M n ya. (Note the use of the Existence of Multiples.) Thus g (x) = m g (e),
and g (y) = n g (a). So g (a)

g (e) =
m g (y)
n g (x) ; and so, since g (a)

g (e) <
m
n , we know that g (y)

g (x) < 1
and so y ≺ x. But since M m xe and M nya, f (x) = m f (e) and f (y) = n f (a), and
so: m

n

f (a)
=

f (x)
f (y)

But the left hand side of this is less than 1 (since m
n < f (a)) whereas the right

hand side is greater than 1 (since y ≺ x); contradiction.

2.6 Kinds of quantities

We’ve seen how to prove representation and uniqueness theorems for mass.
Quantities other than mass might obey similar theorems. For example, sup-
pose that instead of dealing with massive objects, we were instead dealing with
measuring rods. We would have a binary relation of at-least-as-long-as, and
a three-place relation of concatenation: one rod is as long as two others laid
end-to-end. These relations might obey exactly parallel assumptions to those
obeyed by � and C . And so one could prove the same uniqueness and repre-
sentation theorems (since those theorems depend only on the structure of the
assumptions).

The theorems relied essentially on there being the mass relations C and �:
on it making sense to speak of one object being at least as massive as another, and
of one object being the combined mass of two others. These seem like sensible
assumptions to make about mass, but for other quantities, parallel assumptions
aren’t justi�ed. Take wit, for example. Perhaps it makes sense to speak of one
person being at least as witty as another. But it surely makes no sense to speak
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of one person being exactly as witty as two other people combined. What
this means is that we can’t have a representation theorem for wit of the same
sort as the one we had for mass; or rather, the de�nition of homomorphism
that is involved in that theorem isn’t well-de�ned for wit, since we don’t have
the analog of the C relation. But we may be able to prove a different kind of
representation theorem. If the at-least-as-witty relation has certain appropriate
features, then we may be able to prove that the structure 〈P,�W 〉 (P = the
set of people; �W= the at-least-as-witty relation) is homomorphic to 〈R,≥〉,
and that all homomorphisms have the same order. The size of the numbers
assigned would not be signi�cant; all that would be signi�cant is their order.

It could be even worse. Maybe the �W relation isn’t connected—that is,
maybe there are two people that are “incomparable” in terms of wit in the sense
that neither is at least as witty as the other. In that case we won’t be able to have
such homomorphisms (because ≥ is connected: for any real numbers a and b ,
either a ≥ b or b ≥ a). But we could still have a kind of representation theorem:
maybe 〈P,�W 〉 is homomorphic to some mathematical structure other than
〈R,≥〉 (some structure that isn’t linearly ordered). That wouldn’t be much of a
representation, but still.

2.7 Measurement theory: metaphysics and epistemology

Measurement theory was largely developed by philosophers of science who were
concerned with questions like: we can’t observe correlations between physical
objects and real numbers, so how can the use of real numbers be justi�ed in
terms of things we can observe?

But metaphysicians also have concerns about quantity (as we noted earlier),
and they too can answer them using measurement theory. Recall how we
introduced two main concerns about quantities. First, how can numbers be so
useful in science, when the fundamental facts about the quantities don’t involve
numbers at all? And second, what does it mean to say that certain kinds of
claims, such as the claim that some object has mass 2, or that a certain person
is exactly twice as witty as another, don’t “make sense”? There are natural ways
to answer these questions using measurement theory.

To the �rst, we could say that the relations in the nonmathematical structures
(� and C in the case of mass) are fundamental relations. We could then use
the representation and uniqueness theorems to show how numbers could be
useful in science, even though the fundamental mass relations have nothing to
do with numbers. What we do when we use numbers to talk about a quantity
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is: we pick one of the homomorphisms, and use it to talk about objects. Talk
of the numbers assigned by such a homomorphism carries with it information
about the purely nonmathematical structure, as we saw earlier.

As for the second: as we saw, there is more than one homomorphism from
〈A,�,C 〉 into 〈R,≥,+〉. So if you just say “the mass of an object is 2”, which
homomorphism are you talking about? Now, even when you say “the ratio of x’s
mass to y’s mass is 1.75”, there still is the problem that you haven’t mentioned a
speci�c homomorphism. But here it doesn’t matter as much, since the statement
doesn’t vary in truth value from homomorphism to homomorphism. (One
could have said instead: “on every homomorphism, the ratio of x’s mass to
y’s mass is 1.75”.) What about wit? Why doesn’t it make sense to say “twice
as witty”, and more generally to measure wit with real numbers? This is a
little tricker, but the crucial thing is that there is no metaphysical basis for a
ratio scale of wit, in that: there are no wit relations such that a wit structure is
homomorphic to 〈R,≥,+〉. Now, this is tricky, for there may well be relations
(“abundant” relations in the sense of Lewis (1986, pp. 59–69)) over people with
the right formal properties. But none of these is “distinguished”. (The issue is
tricky because since no wit relations are perfectly fundamental, ‘distinguished’
can’t mean perfectly fundamental.)

Metaphysicians and philosophers of science have different concerns, which
can lead them in different directions here. Just a few examples. First, notice that
relations like � and C are comparative. They don’t specify particular masses
of their relata, they only specify relative mass relations. It’s very natural to
focus on such relations if you’re concerned with epistemology, because relative
mass relations are the ones we directly measure. But it’s less clear whether it’s
plausible to take such comparisons to be fundamental relations. After all, some
people would argue that the fact that x is at least as massive as y holds in virtue
of the particular masses of x and y.

To take another example, the representation and uniqueness theorems
make certain existence assumptions. The uniqueness theorem, for example,
makes essential use of the assumption of the existence of multiples. There is
a kind of epistemic concern here: how do we know that we can always �nd
such multiples? But there is a more pressing concern: is the metaphysical
assumption that there exist all these multiples justi�ed? Couldn’t I have had
exactly the same mass as I actually have, even if there hadn’t existed arbitrarily
large multiples?

To take a �nal example, philosophers of science often worried that certain of
the assumptions, such as the transitivity of�, are unjusti�ed given experimental
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error. Suppose the idea of x � y is “if you put x and y on a pan balance, the
y side won’t move downward”. And suppose your pan balance won’t register
differences smaller than a certain amount. Then this relation will be intransitive.
But this sort of concern doesn’t seem to have any metaphysical analog.
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